Asymptotics of a~solution to the Neumann problem in a~thin domain with the sharp edge
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 35, Tome 332 (2006), pp. 193-219
Voir la notice de l'article provenant de la source Math-Net.Ru
The asymptotic expansion of the solution of the Neumann problem for the second order equation in a thin domain with the sharp edge is constructed and justified. Because of the presence of a edge with the zero casp the limit equation on the longitudinal section of a domain obtained as a result of the procedure of lowering a dimention proves to be degenerating and its solution has a nonregular behavior near a boundary.
@article{ZNSL_2006_332_a12,
author = {S. A. Nazarov and Ya. Taskinen},
title = {Asymptotics of a~solution to the {Neumann} problem in a~thin domain with the sharp edge},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {193--219},
publisher = {mathdoc},
volume = {332},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a12/}
}
TY - JOUR AU - S. A. Nazarov AU - Ya. Taskinen TI - Asymptotics of a~solution to the Neumann problem in a~thin domain with the sharp edge JO - Zapiski Nauchnykh Seminarov POMI PY - 2006 SP - 193 EP - 219 VL - 332 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a12/ LA - ru ID - ZNSL_2006_332_a12 ER -
S. A. Nazarov; Ya. Taskinen. Asymptotics of a~solution to the Neumann problem in a~thin domain with the sharp edge. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 35, Tome 332 (2006), pp. 193-219. http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a12/