@article{ZNSL_2006_332_a12,
author = {S. A. Nazarov and Ya. Taskinen},
title = {Asymptotics of a~solution to the {Neumann} problem in a~thin domain with the sharp edge},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {193--219},
year = {2006},
volume = {332},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a12/}
}
TY - JOUR AU - S. A. Nazarov AU - Ya. Taskinen TI - Asymptotics of a solution to the Neumann problem in a thin domain with the sharp edge JO - Zapiski Nauchnykh Seminarov POMI PY - 2006 SP - 193 EP - 219 VL - 332 UR - http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a12/ LA - ru ID - ZNSL_2006_332_a12 ER -
S. A. Nazarov; Ya. Taskinen. Asymptotics of a solution to the Neumann problem in a thin domain with the sharp edge. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 35, Tome 332 (2006), pp. 193-219. http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a12/
[1] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002 | Zbl
[2] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[3] V. I. Smirnov, Vyrozhdayuschiesya ellipticheskie i giperbolicheskie uravneniya, Nauka, M., 1966 | MR
[4] S. G. Mikhlin, Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | MR | Zbl
[5] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Trudy Moskovsk. matem. obschestva, 16, 1963, 219–292
[6] V. A. Kondratev, “O gladkosti reshenii zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v okrestnosti rebra”, Differentsialnye uravneniya, 6:6 (1970), 1831–1843
[7] Zh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl
[8] V. A. Nikishkin, “Osobennosti reshenii zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v okrestnosti rebra”, Vestnik Moskovskogo universiteta, 1979, no. 2, 51–62 | MR | Zbl
[9] V. G. Mazya, B. A. Plamenevskii, “Ob elliptichnosti kraevykh zadach v oblastyakh s kusochno gladkoi granitsei”, Tr. simpoziuma po mekh. sploshnykh sred i rodstvennym probl. analiza, T. 1, Metsniereba, Tbilisi, 1973, 171–181
[10] V. G. Mazya, B. A. Plamenevskii, “Shauderovskie otsenki reshenii ellipticheskikh kraevykh zadach v oblastyakh s rebrami na granitse”, Differents. uravneniya s chastnymi proizvodnymi, Trudy seminara S. L. Soboleva, 2, Izd-vo SO AN SSSR, Novosibirsk, 1978, 69–102 | MR
[11] S. A. Nazarov, B. A. Plamenevskii, “Zadacha Neimana dlya samosopryazhennykh ellipticheskikh sistem v oblasti s kusochno gladkoi granitsei”, Trudy leningradskogo matem. obschestva, 1, 1990, 174–211 | MR
[12] S. A. Nazarov, “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi matem. nauk, 54:5 (1999), 77–142 | MR | Zbl
[13] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991
[14] A. S. Slutskii, “Ob asimptotike reshenii vyrozhdayuschikhsya ellipticheskikh uravnenii s malym parametrom pri starshikh proizvodnykh”, Vestnik LGU. Ser. mat., mekh, astr., 1981, no. 3, 59–64 | MR
[15] A. S. Slutskii, “Ob asimptotike vyrozhdayuschikhsya ellipticheskikh uravnenii vtorogo poryadka pri malom vozmuschenii granitsy oblasti”, Matematicheskie zametki, 37:1 (1985), 63–71 | MR
[16] S. A. Nazarov, A. S. Slutskii, “Stepennye pogranichnye sloi v zadache osredneniya skalyarnogo uravneniya, vyrozhdayuschegosya na granitse”, Problemy matem. analiza, Vyp. 23, Nauchn. kniga, Novosibirsk, 2001, 94–146 | MR
[17] E. V. Makhover, “Izgib plastinki peremennoi tolschiny s ostrym kraem”, Uch. zap. Len. gos. ped. in–ta, fiz.–matem. f–ta, XVII, no. 2, 1957, 28–39
[18] A. M. Ilin, “Kraevaya zadacha dlya ellipticheskogo uravneniya vtorogo poryadka v oblasti s uzkoi schelyu. II: Oblast s malym otverstiem”, Matem. sbornik, 103:2 (1977), 265–284 | MR
[19] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR
[20] W. G. Mazja, S. A. Nazarov, B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, 1, Akademie-Verlag, Berlin, 1991