Investigation of wave field in effective model of layered elastic-fluid medium
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 35, Tome 332 (2006), pp. 175-192
Voir la notice de l'article provenant de la source Math-Net.Ru
For the medium consisting of alternating elastic and fluid
layers, the effective model is constructed and
investigated. This model is a special case of the Biot
medium. The wave field is represented as Fourier and Mellin
integrals. In the Mellin integral we replace contour of
integration by a stationary contour. In the obtained
expressions, we rearrange the integrals and calculate the
inner integral. The external integral is equal to two
residues. The corresponding poles are roots of two
equations of fourth order. These roots are situated at the
right half-plane and can be complex or real. The obtained
representation for the wave field corresponds to the
expressions derived by the method of Smirnov–Sobolev.
@article{ZNSL_2006_332_a11,
author = {L. A. Molotkov and M. N. Perekareva},
title = {Investigation of wave field in effective model of layered elastic-fluid medium},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {175--192},
publisher = {mathdoc},
volume = {332},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a11/}
}
TY - JOUR AU - L. A. Molotkov AU - M. N. Perekareva TI - Investigation of wave field in effective model of layered elastic-fluid medium JO - Zapiski Nauchnykh Seminarov POMI PY - 2006 SP - 175 EP - 192 VL - 332 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a11/ LA - ru ID - ZNSL_2006_332_a11 ER -
L. A. Molotkov; M. N. Perekareva. Investigation of wave field in effective model of layered elastic-fluid medium. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 35, Tome 332 (2006), pp. 175-192. http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a11/