On a control problem for the wave equation in $\mathbf R^3$
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 35, Tome 332 (2006), pp. 19-37
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the solutions of the wave equation (waves) initiated by the infinitely far sources (controls) and study the $L_2$-completeness of the reachable sets consisting of such waves. This problem is a natural analog of the control problem for a bounded domain where the completeness (local approximate controllability) in the subdomains filled with waves generated by boundary controls occurs. We show that, in contrast to the latter case, the reachable sets formed by the waves incoming from infinity, aren't complete in the filled subdomains and describe the corresponding defect. Then, extending the class of controls on a set of special polynomials, we gain the completeness. A transform defined by jumps appearing in result of projecting functions on the reachable sets is introduced. Its relation to the Radon transform is clarified.
@article{ZNSL_2006_332_a1,
     author = {M. I. Belishev and A. F. Vakulenko},
     title = {On a control problem for the wave equation in~$\mathbf R^3$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {19--37},
     year = {2006},
     volume = {332},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a1/}
}
TY  - JOUR
AU  - M. I. Belishev
AU  - A. F. Vakulenko
TI  - On a control problem for the wave equation in $\mathbf R^3$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 19
EP  - 37
VL  - 332
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a1/
LA  - ru
ID  - ZNSL_2006_332_a1
ER  - 
%0 Journal Article
%A M. I. Belishev
%A A. F. Vakulenko
%T On a control problem for the wave equation in $\mathbf R^3$
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 19-37
%V 332
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a1/
%G ru
%F ZNSL_2006_332_a1
M. I. Belishev; A. F. Vakulenko. On a control problem for the wave equation in $\mathbf R^3$. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 35, Tome 332 (2006), pp. 19-37. http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a1/

[1] S. A. Avdonin, M. I. Belishev, S. A. Ivanov, “Upravlyaemost v zakhvachennoi oblasti dlya volnovogo uravneniya s singulyarnym granichnym upravleniem”, Zap. nauch. semin. POMI, 210, 1994, 3–14

[2] M. I. Belishev, “Boundary control in reconstruction of manifolds and metrics (the BC-method)”, Invers Problems, 13:5 (1997), R1–R45 | DOI | MR | Zbl

[3] M. I. Belishev, A. K. Glasman, “Dynamical inverse problem for the Maxwell system: recovering the velocity in a regular zone (the BC-method)”, Algebra i Analis, 12:2 (2000), 131–187 | MR | Zbl

[4] M. I. Belishev, “On a unitary transform in the space ${\vec L}_2(\Omega;{\mathbf R}^3)$ connected with the Weyl decomposition”, Zap. Nauchn. Semin. POMI, 275, 2001, 25–40 | Zbl

[5] R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, H. C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, Inc., 1982 | MR | Zbl

[6] P. Laks, R. Fillips, Teoriya rasseyaniya, Mir, Moskva, 1971, 312 pp. | MR

[7] D. L. Russell, “Controllability and stabilizability theory for linear partial differential equations”, SIAM Review, 20:4 (1978), 639–739 | DOI | MR | Zbl