Voir la notice du chapitre de livre
@article{ZNSL_2006_332_a1,
author = {M. I. Belishev and A. F. Vakulenko},
title = {On a control problem for the wave equation in~$\mathbf R^3$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {19--37},
year = {2006},
volume = {332},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a1/}
}
M. I. Belishev; A. F. Vakulenko. On a control problem for the wave equation in $\mathbf R^3$. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 35, Tome 332 (2006), pp. 19-37. http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a1/
[1] S. A. Avdonin, M. I. Belishev, S. A. Ivanov, “Upravlyaemost v zakhvachennoi oblasti dlya volnovogo uravneniya s singulyarnym granichnym upravleniem”, Zap. nauch. semin. POMI, 210, 1994, 3–14
[2] M. I. Belishev, “Boundary control in reconstruction of manifolds and metrics (the BC-method)”, Invers Problems, 13:5 (1997), R1–R45 | DOI | MR | Zbl
[3] M. I. Belishev, A. K. Glasman, “Dynamical inverse problem for the Maxwell system: recovering the velocity in a regular zone (the BC-method)”, Algebra i Analis, 12:2 (2000), 131–187 | MR | Zbl
[4] M. I. Belishev, “On a unitary transform in the space ${\vec L}_2(\Omega;{\mathbf R}^3)$ connected with the Weyl decomposition”, Zap. Nauchn. Semin. POMI, 275, 2001, 25–40 | Zbl
[5] R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, H. C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, Inc., 1982 | MR | Zbl
[6] P. Laks, R. Fillips, Teoriya rasseyaniya, Mir, Moskva, 1971, 312 pp. | MR
[7] D. L. Russell, “Controllability and stabilizability theory for linear partial differential equations”, SIAM Review, 20:4 (1978), 639–739 | DOI | MR | Zbl