The centralizer algebra of the diagonal action of the group $GL_n(\mathbb C)$ in a mixed tensor space
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIV, Tome 331 (2006), pp. 170-198 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the walled Brauer algebra $Br_{k,l}(n)$ introduced by V. Turaev and K. Koike. We prove that this algebra is a subalgebra of the Brauer algebra and that it is isomorphic, for sufficiently large $n\in\mathbb N$, to the centralizer algebra of the diagonal action of the group $GL_n(\mathbb C)$ in a mixed tensor space. We also give a presentation of the algebra $Br_{k,l}(n)$ by generators and relations. For the generic parameter, the algebra is semisimple, and in this case we describe the Bratteli diagram for the family of algebras under consideration and give realizations of the irreducible representations. We also give a new, more natural, proof of the formulas for the characters of the walled Brauer algebras.
@article{ZNSL_2006_331_a9,
     author = {P. P. Nikitin},
     title = {The centralizer algebra of the diagonal action of the group $GL_n(\mathbb C)$ in a~mixed tensor space},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {170--198},
     year = {2006},
     volume = {331},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_331_a9/}
}
TY  - JOUR
AU  - P. P. Nikitin
TI  - The centralizer algebra of the diagonal action of the group $GL_n(\mathbb C)$ in a mixed tensor space
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 170
EP  - 198
VL  - 331
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_331_a9/
LA  - ru
ID  - ZNSL_2006_331_a9
ER  - 
%0 Journal Article
%A P. P. Nikitin
%T The centralizer algebra of the diagonal action of the group $GL_n(\mathbb C)$ in a mixed tensor space
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 170-198
%V 331
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_331_a9/
%G ru
%F ZNSL_2006_331_a9
P. P. Nikitin. The centralizer algebra of the diagonal action of the group $GL_n(\mathbb C)$ in a mixed tensor space. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIV, Tome 331 (2006), pp. 170-198. http://geodesic.mathdoc.fr/item/ZNSL_2006_331_a9/

[1] G. Veil, Klassicheskie gruppy, Inostrannaya literatura, M., 1947

[2] A. M. Vershik, A. Yu. Okunkov, “Novyi podkhod k teorii predstavlenii simmetricheskikh grupp, II”, Zap. nauchn. semin. POMI, 307, 2004, 57–98 | MR

[3] A. M. Vershik, N. V. Tsilevich, “O preobrazovanii Fure na beskonechnoi simmetricheskoi gruppe”, Zap. nauchn. semin. POMI, 325, 2006, 61–82 | MR

[4] P. P. Nikitin, Razdelennaya algebra Brauera i prostye bluzhdaniya po graduirovannym grafam, Dissertatsiya na soiskanie uchenoi stepeni kand. fiz.-mat.nauk, S.-Peterburg, 2006

[5] J. S. Birman, H. Wenzl, “Braids, link polynomials and a new algebra”, Trans. Amer. Math. Soc., 313:1 (1989), 249–274 | DOI | MR

[6] G. Benkart, M. Chakrabarti, T. Halverson, R. Leduc, C. Lee, J. Stroomer, “Tensor product representations of general linear groups and their connections with Brauer algebras”, J. Algebra, 166:3 (1994), 529–567 | DOI | MR | Zbl

[7] R. Brauer, “On algebras which are connected with the semisimple continious groups”, Ann. Math., 38:4 (1937), 854–872 | DOI | MR

[8] W. P. Brown, “An algebra related to the orthogonal group”, Michigan Math. J., 3:1 (1955–1956), 1–22 | DOI | MR

[9] W. P. Brown, “The semisimplicity of $\omega_f^n$”, Ann. Math., 63 (1956), 324–335 | DOI | MR | Zbl

[10] W. Fulton, Young Tableaux, Cambridge Univ. Press, 1997 | MR | Zbl

[11] T. Halverson, “Characters of the centralizer algebras of mixed tensor representations of $gl(r,\mathbb{C})$ and the quantum group $\mathcal U_q(gl(r,\mathbb{C}))$”, Pacific J. Math., 174:2 (1996), 359–410 | MR | Zbl

[12] V. F. R. Jones, “Index for subfactors”, Inv. Math., 72 (1783), 1–25 | DOI | MR

[13] L. H. Kauffman, An invariant of regular isotopy, Preprint, 1986 | MR

[14] S. V. Kerov, “Realizations of representations of Brauer semigroup”, Zap. Nauchn. Semin. LOMI, 164, 1987, 189–193

[15] S. V. Kerov, “Characters of Hecke and Birman–Wenzl algebras”, Lect. Notes in Math., 1510, 1991, 335–340 | MR

[16] S. V. Kerov, G. I. Olshansky, A. M. Vershik, “Harmonic analysis on the infinite symmetric group. A deformation of the regular representation”, C. R. Acad. Sci. Paris Sér. I, 316 (1993), 773–778 | MR | Zbl

[17] S. V. Kerov, G. I. Olshansky, A. M. Vershik, “Harmonic analysis on the infinite symmetric group”, Inv. Math., 158:3 (2004), 551–642 | DOI | MR | Zbl

[18] K. Koike, “On the decomposition of tensor products of the representations of classical groups: By means of universal characters”, Adv. Math., 74 (1989), 57–86 | DOI | MR | Zbl

[19] M. Kosuda, J. Murakami, “Centralizer algebras of the mixed tensor representations of quantum group $u_q(gl(m,\mathbb C))$”, Osaka J. Math., 30 (1993), 475–507 | MR | Zbl

[20] R. Leduc, A two-parameter version of the centralizer algebra of mixed tensor representations of quantum $GL(r)$, Ph. D thesis, University of Wisconsin–Madison, 1994

[21] J. Murakami, “The Kauffman polynomial of links and the representation theory”, Osaka J. Math., 24 (1987), 745–758 | MR | Zbl

[22] M. Nazarov, “Young's orthogonal form for Brauer's centralizer algebras”, J. Algebra, 182:3 (1996), 664–693 | DOI | MR | Zbl

[23] A. Okounkov, A. Vershik, “A new approach to representation theory of symmetric groups”, Selecta Math. New Series, 2:4 (1996), 581–605 | DOI | MR | Zbl

[24] A. Ram, “Characters of Brauer centralizer algebras”, Pacific J. Math., 169:1 (1995), 173–200 | MR | Zbl

[25] A. Ram, H. Wenzl, “Matrix units for centralizer algebras”, J. Algebra, 145:2 (1992), 378–395 | DOI | MR | Zbl

[26] I. Schur, Über eine Klasse von Matrizen, die sich einer gegebenen, Ph. D thesis, 1901

[27] V. G. Turaev, “Operator invariants of matrices and $R$-matrices”, Izv. Akad. Nauk SSSR, Ser. Mat., 53:5 (1989), 1073–1107 | MR

[28] A. M. Vershik, “Gelfand–Tsetlin algebras, expectations, inverse limits, Fourier analysis”, Unity of Mathematics. In Honor of the Ninetieth Birthday of I. M. Gelfand, Progr. Math., 244, Birkhäuser, 2005, 619–631 | MR

[29] H. Wenzl, “On the structure of Brauer's centralizer algebras”, Ann. Math., 129:1 (1988), 173–193 | DOI | MR