The centralizer algebra of the diagonal action of the group $GL_n(\mathbb C)$ in a~mixed tensor space
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIV, Tome 331 (2006), pp. 170-198
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the walled Brauer algebra $Br_{k,l}(n)$ introduced by V. Turaev and K. Koike.
We prove that this algebra is a subalgebra of the Brauer algebra and that it is isomorphic, for sufficiently large $n\in\mathbb N$, to the centralizer algebra of the diagonal
action of the group $GL_n(\mathbb C)$ in a mixed tensor space. We also give a presentation of the algebra $Br_{k,l}(n)$ by generators and relations. For the generic parameter, the
algebra is semisimple, and in this case we describe the Bratteli diagram for the family
of algebras under consideration and give realizations of the irreducible representations. We also give a new, more natural, proof of the formulas for the characters of the walled Brauer
algebras.
@article{ZNSL_2006_331_a9,
author = {P. P. Nikitin},
title = {The centralizer algebra of the diagonal action of the group $GL_n(\mathbb C)$ in a~mixed tensor space},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {170--198},
publisher = {mathdoc},
volume = {331},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_331_a9/}
}
TY - JOUR AU - P. P. Nikitin TI - The centralizer algebra of the diagonal action of the group $GL_n(\mathbb C)$ in a~mixed tensor space JO - Zapiski Nauchnykh Seminarov POMI PY - 2006 SP - 170 EP - 198 VL - 331 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2006_331_a9/ LA - ru ID - ZNSL_2006_331_a9 ER -
P. P. Nikitin. The centralizer algebra of the diagonal action of the group $GL_n(\mathbb C)$ in a~mixed tensor space. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIV, Tome 331 (2006), pp. 170-198. http://geodesic.mathdoc.fr/item/ZNSL_2006_331_a9/