@article{ZNSL_2006_331_a9,
author = {P. P. Nikitin},
title = {The centralizer algebra of the diagonal action of the group $GL_n(\mathbb C)$ in a~mixed tensor space},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {170--198},
year = {2006},
volume = {331},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_331_a9/}
}
TY - JOUR AU - P. P. Nikitin TI - The centralizer algebra of the diagonal action of the group $GL_n(\mathbb C)$ in a mixed tensor space JO - Zapiski Nauchnykh Seminarov POMI PY - 2006 SP - 170 EP - 198 VL - 331 UR - http://geodesic.mathdoc.fr/item/ZNSL_2006_331_a9/ LA - ru ID - ZNSL_2006_331_a9 ER -
P. P. Nikitin. The centralizer algebra of the diagonal action of the group $GL_n(\mathbb C)$ in a mixed tensor space. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIV, Tome 331 (2006), pp. 170-198. http://geodesic.mathdoc.fr/item/ZNSL_2006_331_a9/
[1] G. Veil, Klassicheskie gruppy, Inostrannaya literatura, M., 1947
[2] A. M. Vershik, A. Yu. Okunkov, “Novyi podkhod k teorii predstavlenii simmetricheskikh grupp, II”, Zap. nauchn. semin. POMI, 307, 2004, 57–98 | MR
[3] A. M. Vershik, N. V. Tsilevich, “O preobrazovanii Fure na beskonechnoi simmetricheskoi gruppe”, Zap. nauchn. semin. POMI, 325, 2006, 61–82 | MR
[4] P. P. Nikitin, Razdelennaya algebra Brauera i prostye bluzhdaniya po graduirovannym grafam, Dissertatsiya na soiskanie uchenoi stepeni kand. fiz.-mat.nauk, S.-Peterburg, 2006
[5] J. S. Birman, H. Wenzl, “Braids, link polynomials and a new algebra”, Trans. Amer. Math. Soc., 313:1 (1989), 249–274 | DOI | MR
[6] G. Benkart, M. Chakrabarti, T. Halverson, R. Leduc, C. Lee, J. Stroomer, “Tensor product representations of general linear groups and their connections with Brauer algebras”, J. Algebra, 166:3 (1994), 529–567 | DOI | MR | Zbl
[7] R. Brauer, “On algebras which are connected with the semisimple continious groups”, Ann. Math., 38:4 (1937), 854–872 | DOI | MR
[8] W. P. Brown, “An algebra related to the orthogonal group”, Michigan Math. J., 3:1 (1955–1956), 1–22 | DOI | MR
[9] W. P. Brown, “The semisimplicity of $\omega_f^n$”, Ann. Math., 63 (1956), 324–335 | DOI | MR | Zbl
[10] W. Fulton, Young Tableaux, Cambridge Univ. Press, 1997 | MR | Zbl
[11] T. Halverson, “Characters of the centralizer algebras of mixed tensor representations of $gl(r,\mathbb{C})$ and the quantum group $\mathcal U_q(gl(r,\mathbb{C}))$”, Pacific J. Math., 174:2 (1996), 359–410 | MR | Zbl
[12] V. F. R. Jones, “Index for subfactors”, Inv. Math., 72 (1783), 1–25 | DOI | MR
[13] L. H. Kauffman, An invariant of regular isotopy, Preprint, 1986 | MR
[14] S. V. Kerov, “Realizations of representations of Brauer semigroup”, Zap. Nauchn. Semin. LOMI, 164, 1987, 189–193
[15] S. V. Kerov, “Characters of Hecke and Birman–Wenzl algebras”, Lect. Notes in Math., 1510, 1991, 335–340 | MR
[16] S. V. Kerov, G. I. Olshansky, A. M. Vershik, “Harmonic analysis on the infinite symmetric group. A deformation of the regular representation”, C. R. Acad. Sci. Paris Sér. I, 316 (1993), 773–778 | MR | Zbl
[17] S. V. Kerov, G. I. Olshansky, A. M. Vershik, “Harmonic analysis on the infinite symmetric group”, Inv. Math., 158:3 (2004), 551–642 | DOI | MR | Zbl
[18] K. Koike, “On the decomposition of tensor products of the representations of classical groups: By means of universal characters”, Adv. Math., 74 (1989), 57–86 | DOI | MR | Zbl
[19] M. Kosuda, J. Murakami, “Centralizer algebras of the mixed tensor representations of quantum group $u_q(gl(m,\mathbb C))$”, Osaka J. Math., 30 (1993), 475–507 | MR | Zbl
[20] R. Leduc, A two-parameter version of the centralizer algebra of mixed tensor representations of quantum $GL(r)$, Ph. D thesis, University of Wisconsin–Madison, 1994
[21] J. Murakami, “The Kauffman polynomial of links and the representation theory”, Osaka J. Math., 24 (1987), 745–758 | MR | Zbl
[22] M. Nazarov, “Young's orthogonal form for Brauer's centralizer algebras”, J. Algebra, 182:3 (1996), 664–693 | DOI | MR | Zbl
[23] A. Okounkov, A. Vershik, “A new approach to representation theory of symmetric groups”, Selecta Math. New Series, 2:4 (1996), 581–605 | DOI | MR | Zbl
[24] A. Ram, “Characters of Brauer centralizer algebras”, Pacific J. Math., 169:1 (1995), 173–200 | MR | Zbl
[25] A. Ram, H. Wenzl, “Matrix units for centralizer algebras”, J. Algebra, 145:2 (1992), 378–395 | DOI | MR | Zbl
[26] I. Schur, Über eine Klasse von Matrizen, die sich einer gegebenen, Ph. D thesis, 1901
[27] V. G. Turaev, “Operator invariants of matrices and $R$-matrices”, Izv. Akad. Nauk SSSR, Ser. Mat., 53:5 (1989), 1073–1107 | MR
[28] A. M. Vershik, “Gelfand–Tsetlin algebras, expectations, inverse limits, Fourier analysis”, Unity of Mathematics. In Honor of the Ninetieth Birthday of I. M. Gelfand, Progr. Math., 244, Birkhäuser, 2005, 619–631 | MR
[29] H. Wenzl, “On the structure of Brauer's centralizer algebras”, Ann. Math., 129:1 (1988), 173–193 | DOI | MR