Canonical representations on two-sheeted hyperboloids
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIV, Tome 331 (2006), pp. 91-124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The two-sheeted hyperboloid $\mathcal L$ in $\mathbb R^n$ can be identified with the unit sphere $\Omega$ in $\mathbb R^n$ without the equator. Canonical representations of the group $G=\mathrm{SO}_0(n-1,1)$ on $\mathcal L$ are defined as the restrictions to $G$ of the representations of the overgroup $\widetilde G=\mathrm{SO}_0(n,1)$ associated with a cone. They act on functions and distributions on the sphere $\Omega$. We decompose these canonical representations into irreducible constituents and decompose the Berezin form.
@article{ZNSL_2006_331_a7,
     author = {V. F. Molchanov},
     title = {Canonical representations on two-sheeted hyperboloids},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {91--124},
     year = {2006},
     volume = {331},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_331_a7/}
}
TY  - JOUR
AU  - V. F. Molchanov
TI  - Canonical representations on two-sheeted hyperboloids
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 91
EP  - 124
VL  - 331
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_331_a7/
LA  - ru
ID  - ZNSL_2006_331_a7
ER  - 
%0 Journal Article
%A V. F. Molchanov
%T Canonical representations on two-sheeted hyperboloids
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 91-124
%V 331
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_331_a7/
%G ru
%F ZNSL_2006_331_a7
V. F. Molchanov. Canonical representations on two-sheeted hyperboloids. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIV, Tome 331 (2006), pp. 91-124. http://geodesic.mathdoc.fr/item/ZNSL_2006_331_a7/

[1] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Gipergeometricheskaya funktsiya, funktsii Lezhandra, Nauka, M., 1965

[2] G. Beitmen, A. Erdeii, Tablitsy integralnykh preobrazovanii, t. II, Nauka, M., 1970

[3] F. A. Berezin, “Kvantovanie v kompleksnykh simmetricheskikh prostranstvakh”, Izv. Akad. Nauk SSSR, ser. matem., 39:2 (1975), 363–402 | MR | Zbl

[4] A. M. Vershik, I. M. Gelfand, M. I. Graev, “Predstavleniya gruppy $SL(2,R)$, gde $R$ – koltso funktsii”, Uspekhi matem. nauk, 28:5 (1973), 83–128 | MR

[5] N. Ya. Vilenkin, Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1965 | MR

[6] L. I. Grosheva, “Kanonicheskie i granichnye predstavleniya na prostranstve Lobachevskogo”, Vestnik Tambovskogo un-ta, 9:3 (2004), 306–311

[7] V. F. Molchanov, “Garmonicheskii analiz na odnorodnykh prostranstvakh”, Itogi nauki i tekhn. Sovr. probl. matem. Fundam. napr., 59, VINITI, 1990, 5–144 | MR

[8] G. van Dijk, S. Hille, “Canonical representations related to hyperbolic spaces”, J. Funct. Anal., 147 (1997), 109–139 | DOI | MR | Zbl

[9] V. F. Molchanov, “Quantization on para-Hermitian symmetric spaces”, Amer. Math. Soc. Transl., Ser. 2, 175(31), AMS, Providence, RI, 1996, 81–95 | MR

[10] V. F. Molchanov, “Canonical and boundary representations on a hyperboloid of one sheet”, Acta Appl. Math., 81:1–3 (2004), 191–204 | DOI | MR

[11] V. F. Molchanov, “Canonical representations on the two-sheeted hyperboloid”, Indag. Math., 16:3–4 (2005), 609–630 | DOI | MR | Zbl

[12] V. F. Molchanov, L. I. Grosheva, “Canonical and boundary representations on the Lobachevsky plane”, Acta Appl. Math., 79:1–2 (2003), 59–77 | MR