Canonical representations on two-sheeted hyperboloids
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIV, Tome 331 (2006), pp. 91-124

Voir la notice de l'article provenant de la source Math-Net.Ru

The two-sheeted hyperboloid $\mathcal L$ in $\mathbb R^n$ can be identified with the unit sphere $\Omega$ in $\mathbb R^n$ without the equator. Canonical representations of the group $G=\mathrm{SO}_0(n-1,1)$ on $\mathcal L$ are defined as the restrictions to $G$ of the representations of the overgroup $\widetilde G=\mathrm{SO}_0(n,1)$ associated with a cone. They act on functions and distributions on the sphere $\Omega$. We decompose these canonical representations into irreducible constituents and decompose the Berezin form.
@article{ZNSL_2006_331_a7,
     author = {V. F. Molchanov},
     title = {Canonical representations on two-sheeted hyperboloids},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {91--124},
     publisher = {mathdoc},
     volume = {331},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_331_a7/}
}
TY  - JOUR
AU  - V. F. Molchanov
TI  - Canonical representations on two-sheeted hyperboloids
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 91
EP  - 124
VL  - 331
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_331_a7/
LA  - ru
ID  - ZNSL_2006_331_a7
ER  - 
%0 Journal Article
%A V. F. Molchanov
%T Canonical representations on two-sheeted hyperboloids
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 91-124
%V 331
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_331_a7/
%G ru
%F ZNSL_2006_331_a7
V. F. Molchanov. Canonical representations on two-sheeted hyperboloids. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIV, Tome 331 (2006), pp. 91-124. http://geodesic.mathdoc.fr/item/ZNSL_2006_331_a7/