The simplicity of branching of the principal series representations of the groups $GL(n,q)$ under the parabolic restrictions
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIV, Tome 331 (2006), pp. 43-59

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the parabolic restriction of representations of the group $GL(n+1,q)$ to the group $GL(n,q)$. The branching of representations under this restriction is simple. We present a direct proof of this fact in the case of the so-called principal series representations. This statement is reduced to the commutativity of the centralizer of the Hecke algebras $Z(H(n,q),H(n+1,q))$; we prove it using an auxiliary combinatorial theory.
@article{ZNSL_2006_331_a4,
     author = {E. E. Goryachko},
     title = {The simplicity of branching of the principal series representations of the groups $GL(n,q)$ under the parabolic restrictions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {43--59},
     publisher = {mathdoc},
     volume = {331},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_331_a4/}
}
TY  - JOUR
AU  - E. E. Goryachko
TI  - The simplicity of branching of the principal series representations of the groups $GL(n,q)$ under the parabolic restrictions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 43
EP  - 59
VL  - 331
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_331_a4/
LA  - ru
ID  - ZNSL_2006_331_a4
ER  - 
%0 Journal Article
%A E. E. Goryachko
%T The simplicity of branching of the principal series representations of the groups $GL(n,q)$ under the parabolic restrictions
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 43-59
%V 331
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_331_a4/
%G ru
%F ZNSL_2006_331_a4
E. E. Goryachko. The simplicity of branching of the principal series representations of the groups $GL(n,q)$ under the parabolic restrictions. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIV, Tome 331 (2006), pp. 43-59. http://geodesic.mathdoc.fr/item/ZNSL_2006_331_a4/