@article{ZNSL_2006_331_a2,
author = {S. Bouarroudj and D. A. Leites},
title = {Simple {Lie} superalgebras and nonintegrable distributions in characteristic~$p$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {15--29},
year = {2006},
volume = {331},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_331_a2/}
}
S. Bouarroudj; D. A. Leites. Simple Lie superalgebras and nonintegrable distributions in characteristic $p$. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIV, Tome 331 (2006), pp. 15-29. http://geodesic.mathdoc.fr/item/ZNSL_2006_331_a2/
[1] D. Alekseevsky, D. Leites, I. Shchepochkina, “Examples of simple Lie superalgebras of vector fields”, C. R. Acad. Bulg. Sci., 34:9 (1980), 1187–1190
[2] M. Atiyah, E. Witten, “$M$-theory dynamics on a manifold of $G_2$ holonomy”, Adv. Theor. Math. Phys., 6:1 (2002), 1–106 | MR | Zbl
[3] A. Belov-Kanel, M. Kontsevich, “Automorphisms of the Weyl algebra”, Lett. Math. Phys., 74:2 (2005), 181–199 | DOI | MR | Zbl
[4] A. Belov-Kanel, L. Rowen, “Computational Aspects of Polynomial Identities”, Research Notes Math., 9 (2005), AK Peters, Ltd., Wellesley, MA | MR
[5] J. Bernstein, D. Leites, “Invariant differential operators and irreducible representations of Lie superalgebras of vector fields”, Selecta Math. Sov., 1:2 (1981), 143–160 | MR | Zbl
[6] É. Cartan, “Über die einfachen Transformationsgrouppen”, Leipziger Berichte, 1893, 395–420 ; ØE uvres complètes. Partie II: Algèbre, systèmes différentiels et problèmes d'équivalence, Second edition, Éditions du Centre National de la Recherche Scientifique (CNRS), Paris, 1984 | Zbl
[7] A. Ciampella, L. A. Lomonaco, “The universal Steenrod algebra at odd primes”, Comm. Algebra, 32:7 (2004), 2589–2607 | DOI | MR | Zbl
[8] I. Cunha, A. Elduque, An extended Freudenthal magic square in characteristic $3$, arXiv: /math.RA/0605379 | MR
[9] W. Fulton, J. Harris, Representation Theory. A First Course, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, 1991 | MR | Zbl
[10] P. Grozman, SuperLie, http://www.equaonline.com/math/SuperLie
[11] P. Grozman, D. Leites, “Defining relations for classical Lie superalgebras with Cartan matrix”, Czech. J. Phys., 51:1 (2001), 1–22 ; arXiv: /hep-th/9702073 | DOI | MR
[12] P. Grozman, D. Leites, SuperLie and problems (to be) solved with it, Preprint MPIM-Bonn, 2003-39 | MR
[13] P. Grozman, D. Leites, “Structures of $G(2)$ type and nonintegrable distributions in characteristic $p$”, Lett. Math. Phys., 74:3 (2005), 229–262 ; arXiv: /math.RT/0509400 | DOI | MR | Zbl
[14] V. G. Kac, “Letter to the editors: “Classification of simple Lie superalgebras””, Funkts. Anal. Prilozhen, 9:3 (1975), 91–92 | MR | Zbl
[15] V. Kac, “Lie superagebras”, Adv. Math., 26 (1977), 8–96 | DOI | Zbl
[16] V. Kac, “Classification of supersymmetries”, Proceedings of the International Congress of Mathematicians, v. I (Beijing, 2002), Higher Ed. Press, Beijing, 2002, 319–344 ; Shun-Jen Cheng, V. Kac, “Addendum: Generalized Spencer cohomology and filtered deformations of $\mathbb{Z}$-graded Lien superalgebras”, Adv. Theor. Math. Phys., 8:4 (2004), 697–709 ; N. Cantarini, S.-J. Cheng, V. Kac, “Errata to paper: Cheng and Kac, "Structure of some $\mathbb{Z}$-graded Lie superalgebras of vector fields"”, Transform. Groups, 9:4 (2004), 399–400 | MR | Zbl | MR | Zbl | DOI | MR
[17] A. I. Kostrikin, I. R. Shafarevich, “Graded Lie algebras of finite characteristic”, Izv. Akad. Nauk SSSR, Ser. Mat., 33 (1969), 251–322 | MR | Zbl
[18] A. Lebedev, Nondegenerate bilinear forms in characteristic 2, related contact forms, simple Lie algebras and simple superalgebras, arXiv: /math.AC/0601536
[19] D. Leites, “Indecomposable representations of Lie superalgebras”, Memorial Volume Dedicated to Misha Saveliev and Igor Luzenko (JINR, Dubna), eds. A. N. Sissakian et al., 2000, 126–131; arXiv: /math.RT/0202184
[20] D. Leites, I. Shchepochkina, Classification of the simple Lie superalgebras of vector fields, Preprint MPIM-Bonn, 2003-28
[21] V. Serganova, “Automorphisms of simple Lie superalgebras”, Izv. Akad. Nauk SSSR, Ser. Mat., 48:3 (1984), 585–598 | MR
[22] V. Serganova, “On generalizations of root systems”, Comm. Algebra, 24:13 (1996), 4281–4299 | DOI | MR | Zbl
[23] I. Shchepochkina, “How to realize Lie algebras by vector fields”, Theor. Math. Phys., 147:3 (2006), 821–838 ; arXiv: /math.RT/0509472 | DOI | MR | Zbl
[24] I. Shchepochkina, “Five exceptional simple Lie superalgebras of vector fields and their fourteen regradings”, Represent. Theory Electr. J. Amer. Math. Soc., 3 (1999), 373–415 ; arXiv: /hep-th/9702121 | DOI | MR | Zbl
[25] H. Strade, Simple Lie Algebras Over Fields of Positive Characteristic. I. Structure Theory, de Gruyter Expositions Math., 38, Walter de Gruyter Co, Berlin, 2004 | MR
[26] J. van de Leur, Contragredient Lie superalgebras of finite growth, Ph. D. Thesis, Utrecht, 1986; Comm. Algebra, 17 (1989), 1815–1841 | DOI | MR | Zbl
[27] R. N. W. Wood, “Problems in the Steenrod algebra”, Bull. London Math. Soc., 30:5 (1998), 449–517 | DOI | MR | Zbl
[28] K. Yamaguchi, “Differential systems associated with simple graded Lie algebras Progress in differential geometry”, Adv. Stud. Pure Math., 22, Math. Soc. Japan, Tokyo, 1993, 413–494 | MR | Zbl