Simple Lie superalgebras and nonintegrable distributions in characteristic~$p$
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIV, Tome 331 (2006), pp. 15-29
Voir la notice de l'article provenant de la source Math-Net.Ru
Recently, Grozman and Leites returned to the original Cartan's description of Lie algebras to interpret the Melikyan algebras (for $p\le 5$) and several other little-known simple Lie algebras
over algebraically closed fields for $p=3$ as subalgebras of Lie algebras of vector fields preserving nonintegrable distributions analogous to (or identical with) those preserved by $G(2)$, $O(7)$, $Sp(4)$, and $Sp(10)$. The description was performed in terms of Cartan–Tanaka–Shchepochkina prolongs using Shchepochkina's algorithm and with the help of SuperLie package. Grozman and Leites also found two new series of simple Lie algebras.
Here we apply the same method to distributions preserved by one of the two exceptional simple finite dimensional Lie superalgebras over $\mathbb C$; for $p=3$, we obtain a series of new simple Lie superalgebras and an exceptional one.
@article{ZNSL_2006_331_a2,
author = {S. Bouarroudj and D. A. Leites},
title = {Simple {Lie} superalgebras and nonintegrable distributions in characteristic~$p$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {15--29},
publisher = {mathdoc},
volume = {331},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_331_a2/}
}
TY - JOUR AU - S. Bouarroudj AU - D. A. Leites TI - Simple Lie superalgebras and nonintegrable distributions in characteristic~$p$ JO - Zapiski Nauchnykh Seminarov POMI PY - 2006 SP - 15 EP - 29 VL - 331 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2006_331_a2/ LA - en ID - ZNSL_2006_331_a2 ER -
S. Bouarroudj; D. A. Leites. Simple Lie superalgebras and nonintegrable distributions in characteristic~$p$. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIV, Tome 331 (2006), pp. 15-29. http://geodesic.mathdoc.fr/item/ZNSL_2006_331_a2/