Hochschild cohomology for Möbius algebra
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 13, Tome 330 (2006), pp. 173-200
Cet article a éte moissonné depuis la source Math-Net.Ru
Additive structure of the Hochschild cohomology ring for Möbius algebra is described in this paper. We use a structure of the bimodule minimal projective resolution of the algebra. This resolution was constructed in the previous publication.
@article{ZNSL_2006_330_a9,
author = {M. A. Kachalova},
title = {Hochschild cohomology for {M\"obius} algebra},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {173--200},
year = {2006},
volume = {330},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a9/}
}
M. A. Kachalova. Hochschild cohomology for Möbius algebra. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 13, Tome 330 (2006), pp. 173-200. http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a9/
[1] C. Riedtmann, “Algebren, Darstellungsköcher, Überlagerungen und zurück”, Comment. Math. Helv., 55 (1980), 199–224 | DOI | MR | Zbl
[2] C. Riedtmann, “Representation-finite self-injective algebras of class $A_n$”, Lect. Notes Math., 832, Berlin et al., 1980, 449–520 | MR | Zbl
[3] A. I. Generalov, M. A. Kachalova, “Bimodulnaya rezolventa algebry Mebiusa”, Zap. nauchn. semin. POMI, 321, 2005, 36–66 | MR | Zbl
[4] K. Erdmann, T. Holm, N. Snashall, “Twisted bimodules and Hochschild cohomology for self-injective algebras of class $A_n$, II”, Algebras and Repr. Theory, 5 (2002), 457–482 | DOI | MR | Zbl