On classification of projective homogeneous varieties up to motivic isomorphism
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 13, Tome 330 (2006), pp. 158-172 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We give a complete classification of anisotropic projective homogeneous varieties of dimension less than 6 up to motivic isomorphism. We give several criterions for anisotropic flag varieties of type $\mathrm{A}_n$ to have isomorphic motives.
@article{ZNSL_2006_330_a8,
     author = {K. V. Zainullin and N. S. Semenov},
     title = {On classification of projective homogeneous varieties up to motivic isomorphism},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {158--172},
     year = {2006},
     volume = {330},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a8/}
}
TY  - JOUR
AU  - K. V. Zainullin
AU  - N. S. Semenov
TI  - On classification of projective homogeneous varieties up to motivic isomorphism
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 158
EP  - 172
VL  - 330
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a8/
LA  - ru
ID  - ZNSL_2006_330_a8
ER  - 
%0 Journal Article
%A K. V. Zainullin
%A N. S. Semenov
%T On classification of projective homogeneous varieties up to motivic isomorphism
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 158-172
%V 330
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a8/
%G ru
%F ZNSL_2006_330_a8
K. V. Zainullin; N. S. Semenov. On classification of projective homogeneous varieties up to motivic isomorphism. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 13, Tome 330 (2006), pp. 158-172. http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a8/

[1] M. Artin, “Brauer–Severi varieties”, Lect. Notes Math., 917, 1982, 194–210 | MR | Zbl

[2] J.-P. Bonnet, “Un isomorphisme motivique entre deux variétés homogènes projectives sous l'action d'un groupe de type $G_2$”, Docum. Math., 8 (2003), 247–277 | MR | Zbl

[3] R. W. Carter, Simple groups of Lie type, John Wiley and Sons, 1972 | MR | Zbl

[4] V. Chernousov, A. Merkurjev, Motivic decomposition of projective homogeneous varieties and the Krull–Schmidt theorem, Preprint, 2004 | MR | Zbl

[5] B. Calmès, V. Petrov, N. Semenov, K. Zainoulline, “Chow motives of twisted flag varieties”, Compos. Math., 142:4 (2006), 1063–1080 | DOI | MR | Zbl

[6] M. Demazure, “Automorphismes et déformations des variétés de Borel”, Inv. Math., 39 (1977), 179–186 | DOI | MR | Zbl

[7] W. Fulton, Intersection theory, Second edition, Springer-Verlag, Berlin et al., 1998 | MR

[8] O. Izhboldin, “Motivic equivalence of quadratic forms”, Docum. Math., 3 (1998), 341–351 | MR | Zbl

[9] M.-A. Knus, A. Merkurjev, M. Rost, J.-P. Tignol, The book of involutions, AMS Colloquium Publications, 44, 1998 | MR | Zbl

[10] N. A. Karpenko, “Chzhou-motivy Grotendika mnogoobrazii Severi–Brauera”, Algebra i analiz, 7:4 (1995), 196–213 | MR | Zbl

[11] N. Karpenko, “Criteria of motivic equivalence for quadratic forms and central simple algebras”, Math. Ann., 317:3 (2000), 585–611 | DOI | MR | Zbl

[12] B. Köck, “Chow motif and higher Chow theory of $G/P$”, Manuscripta Math., 70 (1991), 363–372 | DOI | MR | Zbl

[13] Yu. I. Manin, “Sootvetstviya, motivy i monoidalnye preobrazovaniya”, Matem. sb., 77:4 (1968), 475–507 | MR | Zbl

[14] A. S. Merkurev, “Nulmernye tsikly na nekotorykh involyutivnykh mnogoobraziyakh”, Zap. nauchn. semin. POMI, 227, 1995, 93–105 | MR

[15] A. S. Merkurjev, I. A. Panin, A. R. Wadsworth, “Index reduction formulas for twisted flag varieties, I”, K-Theory, 10:6 (1996), 517–596 | DOI | MR | Zbl

[16] S. Nikolenko, N. Semenov, K. Zainoulline, Motivic decomposition of anisotropic varieties of type $\mathrm{F}$ into generalized Rost motives, Preprint Max-Planck-Institut für Mathematik, 2005 | MR | Zbl

[17] I. Kersten, U. Rehmann, “General splitting of reductive groups”, Tohoku Math. J., 46 (1994), 35–70 | DOI | MR | Zbl

[18] M. Rost, The motive of a Pfister form, Preprint, 1998; http://www.math.uni-bielefeld.de/~rost

[19] R. G. Swan, “Zero cycles on quadric hypersurfaces”, Proc. Amer. Math. Soc., 107:1 (1989), 43–46 | DOI | MR | Zbl

[20] J. Tits, Classification of algebraic semisimple groups, Proc. Symp. Pure Math., 9, Amer. Math. Soc., Providence, RI, 1966 | MR

[21] B. Totaro, “Splitting fields for $\mathrm{E}_8$-torsors”, Duke Math. J., 121:3 (2004), 425–455 | DOI | MR | Zbl

[22] A. Vishik, “Motives of quadrics with applications to the theory of quadratic forms”, Lect. Notes Math., 1835, Berlin et al., 2003, 25–101 | MR