@article{ZNSL_2006_330_a8,
author = {K. V. Zainullin and N. S. Semenov},
title = {On classification of projective homogeneous varieties up to motivic isomorphism},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {158--172},
year = {2006},
volume = {330},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a8/}
}
K. V. Zainullin; N. S. Semenov. On classification of projective homogeneous varieties up to motivic isomorphism. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 13, Tome 330 (2006), pp. 158-172. http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a8/
[1] M. Artin, “Brauer–Severi varieties”, Lect. Notes Math., 917, 1982, 194–210 | MR | Zbl
[2] J.-P. Bonnet, “Un isomorphisme motivique entre deux variétés homogènes projectives sous l'action d'un groupe de type $G_2$”, Docum. Math., 8 (2003), 247–277 | MR | Zbl
[3] R. W. Carter, Simple groups of Lie type, John Wiley and Sons, 1972 | MR | Zbl
[4] V. Chernousov, A. Merkurjev, Motivic decomposition of projective homogeneous varieties and the Krull–Schmidt theorem, Preprint, 2004 | MR | Zbl
[5] B. Calmès, V. Petrov, N. Semenov, K. Zainoulline, “Chow motives of twisted flag varieties”, Compos. Math., 142:4 (2006), 1063–1080 | DOI | MR | Zbl
[6] M. Demazure, “Automorphismes et déformations des variétés de Borel”, Inv. Math., 39 (1977), 179–186 | DOI | MR | Zbl
[7] W. Fulton, Intersection theory, Second edition, Springer-Verlag, Berlin et al., 1998 | MR
[8] O. Izhboldin, “Motivic equivalence of quadratic forms”, Docum. Math., 3 (1998), 341–351 | MR | Zbl
[9] M.-A. Knus, A. Merkurjev, M. Rost, J.-P. Tignol, The book of involutions, AMS Colloquium Publications, 44, 1998 | MR | Zbl
[10] N. A. Karpenko, “Chzhou-motivy Grotendika mnogoobrazii Severi–Brauera”, Algebra i analiz, 7:4 (1995), 196–213 | MR | Zbl
[11] N. Karpenko, “Criteria of motivic equivalence for quadratic forms and central simple algebras”, Math. Ann., 317:3 (2000), 585–611 | DOI | MR | Zbl
[12] B. Köck, “Chow motif and higher Chow theory of $G/P$”, Manuscripta Math., 70 (1991), 363–372 | DOI | MR | Zbl
[13] Yu. I. Manin, “Sootvetstviya, motivy i monoidalnye preobrazovaniya”, Matem. sb., 77:4 (1968), 475–507 | MR | Zbl
[14] A. S. Merkurev, “Nulmernye tsikly na nekotorykh involyutivnykh mnogoobraziyakh”, Zap. nauchn. semin. POMI, 227, 1995, 93–105 | MR
[15] A. S. Merkurjev, I. A. Panin, A. R. Wadsworth, “Index reduction formulas for twisted flag varieties, I”, K-Theory, 10:6 (1996), 517–596 | DOI | MR | Zbl
[16] S. Nikolenko, N. Semenov, K. Zainoulline, Motivic decomposition of anisotropic varieties of type $\mathrm{F}$ into generalized Rost motives, Preprint Max-Planck-Institut für Mathematik, 2005 | MR | Zbl
[17] I. Kersten, U. Rehmann, “General splitting of reductive groups”, Tohoku Math. J., 46 (1994), 35–70 | DOI | MR | Zbl
[18] M. Rost, The motive of a Pfister form, Preprint, 1998; http://www.math.uni-bielefeld.de/~rost
[19] R. G. Swan, “Zero cycles on quadric hypersurfaces”, Proc. Amer. Math. Soc., 107:1 (1989), 43–46 | DOI | MR | Zbl
[20] J. Tits, Classification of algebraic semisimple groups, Proc. Symp. Pure Math., 9, Amer. Math. Soc., Providence, RI, 1966 | MR
[21] B. Totaro, “Splitting fields for $\mathrm{E}_8$-torsors”, Duke Math. J., 121:3 (2004), 425–455 | DOI | MR | Zbl
[22] A. Vishik, “Motives of quadrics with applications to the theory of quadratic forms”, Lect. Notes Math., 1835, Berlin et al., 2003, 25–101 | MR