A combinatorial proof of Euler–Fermat's theorem on presentation of primes of the form $p=8k+3$ by the quadratic form $x^2+2y^2$
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 13, Tome 330 (2006), pp. 155-157
Cet article a éte moissonné depuis la source Math-Net.Ru
An elementary and extremely short proof of the theorem on presentation of primes of the form $p=8k+3$ by the quadratic form $x^2+2y^2$ with integers $x,y$.
@article{ZNSL_2006_330_a7,
author = {A. I. Generalov},
title = {A combinatorial proof of {Euler{\textendash}Fermat's} theorem on presentation of primes of the form $p=8k+3$ by the quadratic form $x^2+2y^2$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {155--157},
year = {2006},
volume = {330},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a7/}
}
TY - JOUR AU - A. I. Generalov TI - A combinatorial proof of Euler–Fermat's theorem on presentation of primes of the form $p=8k+3$ by the quadratic form $x^2+2y^2$ JO - Zapiski Nauchnykh Seminarov POMI PY - 2006 SP - 155 EP - 157 VL - 330 UR - http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a7/ LA - ru ID - ZNSL_2006_330_a7 ER -
%0 Journal Article %A A. I. Generalov %T A combinatorial proof of Euler–Fermat's theorem on presentation of primes of the form $p=8k+3$ by the quadratic form $x^2+2y^2$ %J Zapiski Nauchnykh Seminarov POMI %D 2006 %P 155-157 %V 330 %U http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a7/ %G ru %F ZNSL_2006_330_a7
A. I. Generalov. A combinatorial proof of Euler–Fermat's theorem on presentation of primes of the form $p=8k+3$ by the quadratic form $x^2+2y^2$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 13, Tome 330 (2006), pp. 155-157. http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a7/