A combinatorial proof of Euler--Fermat's theorem on presentation of primes of the form $p=8k+3$ by the quadratic form $x^2+2y^2$
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 13, Tome 330 (2006), pp. 155-157
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An elementary and extremely short proof of the theorem on presentation of primes of the form
$p=8k+3$ by the quadratic form $x^2+2y^2$ with integers $x,y$.
			
            
            
            
          
        
      @article{ZNSL_2006_330_a7,
     author = {A. I. Generalov},
     title = {A combinatorial proof of {Euler--Fermat's} theorem on presentation of primes of the form $p=8k+3$ by the quadratic form $x^2+2y^2$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {155--157},
     publisher = {mathdoc},
     volume = {330},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a7/}
}
                      
                      
                    TY - JOUR AU - A. I. Generalov TI - A combinatorial proof of Euler--Fermat's theorem on presentation of primes of the form $p=8k+3$ by the quadratic form $x^2+2y^2$ JO - Zapiski Nauchnykh Seminarov POMI PY - 2006 SP - 155 EP - 157 VL - 330 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a7/ LA - ru ID - ZNSL_2006_330_a7 ER -
%0 Journal Article %A A. I. Generalov %T A combinatorial proof of Euler--Fermat's theorem on presentation of primes of the form $p=8k+3$ by the quadratic form $x^2+2y^2$ %J Zapiski Nauchnykh Seminarov POMI %D 2006 %P 155-157 %V 330 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a7/ %G ru %F ZNSL_2006_330_a7
A. I. Generalov. A combinatorial proof of Euler--Fermat's theorem on presentation of primes of the form $p=8k+3$ by the quadratic form $x^2+2y^2$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 13, Tome 330 (2006), pp. 155-157. http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a7/