A combinatorial proof of Euler–Fermat's theorem on presentation of primes of the form $p=8k+3$ by the quadratic form $x^2+2y^2$
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 13, Tome 330 (2006), pp. 155-157 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An elementary and extremely short proof of the theorem on presentation of primes of the form $p=8k+3$ by the quadratic form $x^2+2y^2$ with integers $x,y$.
@article{ZNSL_2006_330_a7,
     author = {A. I. Generalov},
     title = {A combinatorial proof of {Euler{\textendash}Fermat's} theorem on presentation of primes of the form $p=8k+3$ by the quadratic form $x^2+2y^2$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {155--157},
     year = {2006},
     volume = {330},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a7/}
}
TY  - JOUR
AU  - A. I. Generalov
TI  - A combinatorial proof of Euler–Fermat's theorem on presentation of primes of the form $p=8k+3$ by the quadratic form $x^2+2y^2$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 155
EP  - 157
VL  - 330
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a7/
LA  - ru
ID  - ZNSL_2006_330_a7
ER  - 
%0 Journal Article
%A A. I. Generalov
%T A combinatorial proof of Euler–Fermat's theorem on presentation of primes of the form $p=8k+3$ by the quadratic form $x^2+2y^2$
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 155-157
%V 330
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a7/
%G ru
%F ZNSL_2006_330_a7
A. I. Generalov. A combinatorial proof of Euler–Fermat's theorem on presentation of primes of the form $p=8k+3$ by the quadratic form $x^2+2y^2$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 13, Tome 330 (2006), pp. 155-157. http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a7/

[1] D. Zagier, “A one-sentence proof that every prime $p\equiv 1 (\operatorname{mod}4)$ is a sum of two squares”, Amer. Math. Monthly, 97:2 (1990), 144 | DOI | MR | Zbl