Is the group $\mathrm{SL}(6,\mathbb{Z})$ $(2,3)$-generated?
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 13, Tome 330 (2006), pp. 101-130

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem whether the group $\mathrm{SL}(6,\mathbb{Z})$ can be generated by an involution and an element of order three is considered. The problem is reduced to the question whether $\mathrm{SL}(6,\mathbb{Z})$ is generated by one of eight explicitly written pairs of matrices.
@article{ZNSL_2006_330_a5,
     author = {M. A. Vsemirnov},
     title = {Is the group $\mathrm{SL}(6,\mathbb{Z})$ $(2,3)$-generated?},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {101--130},
     publisher = {mathdoc},
     volume = {330},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a5/}
}
TY  - JOUR
AU  - M. A. Vsemirnov
TI  - Is the group $\mathrm{SL}(6,\mathbb{Z})$ $(2,3)$-generated?
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 101
EP  - 130
VL  - 330
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a5/
LA  - ru
ID  - ZNSL_2006_330_a5
ER  - 
%0 Journal Article
%A M. A. Vsemirnov
%T Is the group $\mathrm{SL}(6,\mathbb{Z})$ $(2,3)$-generated?
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 101-130
%V 330
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a5/
%G ru
%F ZNSL_2006_330_a5
M. A. Vsemirnov. Is the group $\mathrm{SL}(6,\mathbb{Z})$ $(2,3)$-generated?. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 13, Tome 330 (2006), pp. 101-130. http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a5/