Is the group $\mathrm{SL}(6,\mathbb{Z})$ $(2,3)$-generated?
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 13, Tome 330 (2006), pp. 101-130 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem whether the group $\mathrm{SL}(6,\mathbb{Z})$ can be generated by an involution and an element of order three is considered. The problem is reduced to the question whether $\mathrm{SL}(6,\mathbb{Z})$ is generated by one of eight explicitly written pairs of matrices.
@article{ZNSL_2006_330_a5,
     author = {M. A. Vsemirnov},
     title = {Is the group $\mathrm{SL}(6,\mathbb{Z})$ $(2,3)$-generated?},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {101--130},
     year = {2006},
     volume = {330},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a5/}
}
TY  - JOUR
AU  - M. A. Vsemirnov
TI  - Is the group $\mathrm{SL}(6,\mathbb{Z})$ $(2,3)$-generated?
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 101
EP  - 130
VL  - 330
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a5/
LA  - ru
ID  - ZNSL_2006_330_a5
ER  - 
%0 Journal Article
%A M. A. Vsemirnov
%T Is the group $\mathrm{SL}(6,\mathbb{Z})$ $(2,3)$-generated?
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 101-130
%V 330
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a5/
%G ru
%F ZNSL_2006_330_a5
M. A. Vsemirnov. Is the group $\mathrm{SL}(6,\mathbb{Z})$ $(2,3)$-generated?. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 13, Tome 330 (2006), pp. 101-130. http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a5/

[1] L. Di Martino, The normal structure of the classical modular group, Atti del Convegno in onore di F. Brioschi Istit. Lombardo Accad. Sci. Lett. Rend., 1991

[2] L. Di Martino, M. C. Tamburini, “2-Generation of finite simple groups and some related topics”, Generators and Relations in Groups and Geometries, NATO ASI Ser., Ser. C, 333, eds. A. Barlotti et al., 1991, 195–233 | MR | Zbl

[3] L. Di Martino, N. Vavilov, “$(2,3)$-generation of $\text{\rm SL}_n(q)$. I: Cases $n=5,6,7$”, Comm. Algebra, 22:4 (1994), 1321–1347 | DOI | MR | Zbl

[4] L. Di Martino, N. Vavilov, “$(2,3)$-generation of $\text{\rm SL}_n(q)$. II: Cases $n\geq 8$”, Comm. Algebra, 24 (1996), 487–515 | DOI | MR | Zbl

[5] A. J. Hahn, O. T. O'Meara, The classical groups and $K$-theory, Grundlehr. der Math. Wiss., 291, Springer-Verlag, 1989 | MR | Zbl

[6] N. Jacobson, Basic Algebra, I, 2nd ed., W. H. Freeman and Company, New York, 1985 | MR | Zbl

[7] A. Yu. Luzgarev, I. M. Pevzner, “Nekotorye fakty iz zhizni $\text{\rm GL}(5,\mathbb{Z})$”, Zap. nauchn. semin. POMI, 305, 2003, 153–162 | MR

[8] G. A. Miller, “On the groups generated by two operations”, Bull. Amer. Math. Soc., 7 (1901), 424–426 | DOI | MR | Zbl

[9] Ya. N. Nuzhin, “Ob odnom voprose M. Kondera”, Matem. zametki, 70:1 (2001), 79–87 | MR | Zbl

[10] P. Sanchini, M. C. Tamburini, “Constructive $(2,3)$-generation: a permutational approach”, Rend. Sem. Math. Fis. Milano, 64 (1994), 141–158 | DOI | MR

[11] L. L. Scott, “Matrices and cohomology”, Ann. Math., 105 (1977), 473–492 | DOI | MR | Zbl

[12] M. C. Tamburini, J. S. Wilson, “On the $(2,3)$-generation of some classical groups, II”, J. Algebra, 176 (1995), 667–680 | DOI | MR | Zbl

[13] M. C. Tamburini, J. S. Wilson, N. Gavioli, “On the $(2,3)$-generation of some classical groups, I”, J. Algebra, 168 (1994), 353–370 | DOI | MR | Zbl

[14] M. C. Tamburini, P. Zucca, “On a question of M. Conder”, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl., 11:1 (2000), 5–7 | MR | Zbl