Structure of Chevalley groups: the proof from the Book
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 13, Tome 330 (2006), pp. 36-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We describe and compare different geometric proofs of the main structure theorems for Chevalley groups over commutative rings. To warm up we sketch the known geometric proofs, published by I. Z. Golubchik, N. A. Vavilov, A. V. Stepanov and E. B. Plotkin, such as the $A_2$ and $A_3$ proofs for classical groups, $A_5$ and $D_5$ proofs for $E_6$; $A_7$ and $D_6$ proofs for $E_7$, and $D_8$ proof for $E_8$. After that we expound in more details the $A_2$ proofs for exceptional groups of types $F_4$, $E_6$ and $E_7$, based on multiple commutation. This new proof, the Proof from the Book, gives better bounds than any previously known. Moreover, unlike all previously known proofs it does not use results for fields, factorisation modulo radical, or any specific information concerning structure constants and equations defining exceptional Chevalley groups.
@article{ZNSL_2006_330_a2,
     author = {N. A. Vavilov and M. R. Gavrilovich and S. I. Nikolenko},
     title = {Structure of {Chevalley} groups: the proof from the {Book}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {36--76},
     year = {2006},
     volume = {330},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a2/}
}
TY  - JOUR
AU  - N. A. Vavilov
AU  - M. R. Gavrilovich
AU  - S. I. Nikolenko
TI  - Structure of Chevalley groups: the proof from the Book
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 36
EP  - 76
VL  - 330
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a2/
LA  - ru
ID  - ZNSL_2006_330_a2
ER  - 
%0 Journal Article
%A N. A. Vavilov
%A M. R. Gavrilovich
%A S. I. Nikolenko
%T Structure of Chevalley groups: the proof from the Book
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 36-76
%V 330
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a2/
%G ru
%F ZNSL_2006_330_a2
N. A. Vavilov; M. R. Gavrilovich; S. I. Nikolenko. Structure of Chevalley groups: the proof from the Book. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 13, Tome 330 (2006), pp. 36-76. http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a2/

[1] Kh. Bass, Algebraicheskaya $K$-teoriya, Mir, M., 1973 | MR | Zbl

[2] Z. I. Borevich, N. A. Vavilov, “Raspolozhenie podgrupp v polnoi lineinoi gruppe nad kommutativnym koltsom”, Trudy Mat. In-ta AN SSSR, 165, 1984, 24–42 | MR

[3] A. Borel, “Svoistva i lineinye predstavleniya grupp Shevalle”, Seminar po algebraicheskim gruppam, M., 1973, 9–59 | MR

[4] N. Burbaki, Gruppy i algebry Li, Glavy IV–VI, M., 1972 | Zbl

[5] N. A. Vavilov, Podgruppy rasschepimykh klassicheskikh grupp, Dokt. diss., Leningr. Gos. Un-t, 1987, 1–334

[6] N. A. Vavilov, “Stroenie rasschepimykh klassicheskikh grupp nad kommutativnym koltsom”, Dokl. AN SSSR, 299:6 (1988), 1300–1303 | MR | Zbl

[7] N. A. Vavilov, “O podgruppakh rasschepimykh klassicheskikh grupp”, Trudy Mat. In-ta. AN SSSR, 183, 1990, 29–42 | MR

[8] N. A. Vavilov, “Kak uvidet znaki strukturnykh konstant”, Algebra i Analiz, 19:4 (2007), 34–68 | MR

[9] N. A. Vavilov, “Razlozhenie unipotentov v prisoedinennom predstavlenii gruppy Shevalle tipa $\mathrm{E}_6$”, Algebra i Analiz (to appear)

[10] N. A. Vavilov, M. R. Gavrilovich, “$\mathrm{A}_2$-dokazatelstvo strukturnykh teorem dlya grupp Shevalle tipov $\mathrm{E}_6$ i $\mathrm{E}_7$”, Algebra i Analiz, 16:4 (2004), 54–87 | MR | Zbl

[11] N. A. Vavilov, S. I. Nikolenko, “$\mathrm{A}_2$-dokazatelstvo strukturnykh teorem dlya gruppy Shevalle tipa $\mathrm{F}_4$”, Algebra i Analiz, 20:4 (2008), 27–63 | MR

[12] N. A. Vavilov, E. B. Plotkin, A. V. Stepanov, “Vychisleniya v gruppakh Shevalle nad kommutativnymi koltsami”, Dokl. AN SSSR, 40:1 (1990), 145–147 | MR

[13] I. Z. Golubchik, “O polnoi lineinoi gruppe nad assotsiativnym koltsom”, Uspekhi Mat. Nauk, 28:3 (1973), 179–180 | MR | Zbl

[14] I. Z. Golubchik, “O normalnykh delitelyakh ortogonalnoi gruppy nad assotsiativnym koltsom s involyutsiei”, Uspekhi Mat. Nauk, 30:6 (1975), 165 | Zbl

[15] I. Z. Golubchik, “O normalnykh delitelyakh lineinykh i unitarnykh grupp nad assotsiativnym koltsom”, Prostranstva nad algebrami i nekotorye voprosy teorii setei, Ufa, 1985, 122–142 | MR

[16] V. I. Kopeiko, “Stabilizatsiya simplekticheskikh grupp nad koltsom mnogochlenov”, Mat. Sbornik, 106:1 (1978), 94–107 | MR | Zbl

[17] A. Yu. Luzgarev, “O nadgruppakh $\mathrm{E}(\mathrm{E}_6,R)$ i $\mathrm{E}(\mathrm{E}_7,R)$ v minimalnykh predstavleniyakh”, Zap. nauchn. sem. POMI, 319, 2004, 216–243 | MR | Zbl

[18] R. Steinberg, Lektsii o gruppakh Shevalle, M., 1975

[19] A. V. Stepanov, Usloviya stabilnosti v teorii lineinykh grupp nad koltsami, Kand. diss., Leningr. Gos. Un-t, 1987, 1–112

[20] A. A. Suslin, “O strukture spetsialnoi lineinoi gruppy nad koltsom mnogochlenov”, Izv. AN SSSR, Ser. Mat., 41:2 (1977), 235–252 | MR | Zbl

[21] A. A. Suslin, V. I. Kopeiko, “Kvadratichnye moduli i ortogonalnye gruppy nad koltsami mnogochlenov”, Zap. nauch. semin. LOMI, 71, 1977, 216–250 | MR | Zbl

[22] E. Abe, “Chevalley groups over local rings”, Tôhoku Math. J., 21:3 (1969), 474–494 | DOI | MR | Zbl

[23] E. Abe, “Whitehead groups of Chevalley groups over polynomial rings”, Commun. Algebra, 11:12 (1983), 1271–1307 | DOI | MR | Zbl

[24] E. Abe, “Chevalley groups over commutative rings”, Proc. Conf. Radical Theory, Sendai, 1988, 1–23 | MR | Zbl

[25] E. Abe, “Normal subgroups of Chevalley groups over commutative rings”, Algebraic K-theory and algebraic number theory, Contemp. Math., 83, 1989, 1–17 | MR | Zbl

[26] E. Abe, J. Hurley, “Centers of Chevalley groups over commutative rings”, Comm. Algebra, 16:1 (1988), 57–74 | DOI | MR | Zbl

[27] E. Abe, K. Suzuki, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J., 28:1 (1976), 185–198 | DOI | MR | Zbl

[28] M. Aschbacher, “Some multilinear forms with large isometry groups”, Geom. Dedic., 25:1–3 (1988), 417–465 | MR | Zbl

[29] M. Aschbacher, “The geometry of trilinear forms”, Finite Geometries, Buildings and Related topics, Oxford Univ. Press, 1990, 75–84 | MR

[30] H. Azad, M. Barry, G. M. Seitz, “On the structure of parabolic subgroups”, Comm. Algebra, 18 (1990), 551–562 | DOI | MR | Zbl

[31] A. Bak, The stable structure of quadratic modules, Thesis, Columbia Univ., 1969

[32] A. Bak, “Nonabelian $\mathrm{K}$-theory: The nilpotent class of $\mathrm{K}_1$ and general stability”, K-Theory, 4 (1991), 363–397 | DOI | MR | Zbl

[33] A. Bak, N. Vavilov, “Normality of the elementary subgroup functors”, Math. Proc. Cambridge Philos. Soc., 118:1 (1995), 35–47 | DOI | MR | Zbl

[34] A. Bak, N. Vavilov, “Structure of hyperbolic unitary groups. I: Elementary subgroups”, Algebra Colloquium, 7:2 (2000), 159–196 | DOI | MR | Zbl

[35] R. Carter, Simple groups of Lie type, Wiley, London et al., 1972 | MR | Zbl

[36] A. M. Cohen, R. H. Cushman, “Gröbner bases and standard monomial theory”, Computational algebraic geometry, Progress in Mathematics, 109, Birkhäuser, 1993, 41–60 | MR | Zbl

[37] B. N. Cooperstein, “The fifty-six-dimensional module for $\mathrm{E}_{7}$. I: A four form for $\mathrm{E}_{7}$”, J. Algebra, 173 (1995), 361–389 | DOI | MR | Zbl

[38] D. L. Costa, G. E. Keller, “The $E(2,A)$ sections of $\mathrm{SL}(2,A)$”, Ann. Math., 134:1 (1991), 159–188 | DOI | MR | Zbl

[39] D. L. Costa, G. E. Keller, “Radix redux: normal subgroups of symplectic groups”, J. Reine Angew. Math., 427:1 (1991), 51–105 | MR

[40] D. L. Costa, G. E. Keller, “On the normal subgroups of $\mathrm{G}_2$ groups”, Trans Amer. Math. Soc., 351:12 (1999), 5051–5088 | DOI | MR | Zbl

[41] P. Gilkey, G. M. Seitz, “Some representations of exceptional Lie algebras”, Geom. Dedic., 25:1–3 (1988), 407–416 | MR | Zbl

[42] A. J. Hahn, O. T. O'Meara, The classical groups and K-theory, Springer, Berlin et al., 1989 | MR

[43] R. Hazrat, “Dimension theory and non-stable $K_1$ of quadratic module”, $K$-theory, 27 (2002), 293–327 | DOI | MR

[44] R. Hazrat, On $K$-theory of classical-like groups, Doktorarbeit, Uni. Bielefeld, 2002, 1–62

[45] R. Hazrat, N. A. Vavilov, “$\mathrm{K}_1$ of Chevalley groups are nilpotent”, J. Pure Appl. Algebra, 179 (2003), 99–116 | DOI | MR | Zbl

[46] W. van der Kallen, “Another presentation for the Steinberg group”, Proc. Nederl. Akad. Wetensch., ser. A, 80 (1977), 304–312 | MR | Zbl

[47] V. Lakshmibai, C. S. Seshadri, “Standard monomial theory”, Hyderabad Conference on Algebraic Groups, Manoj Prakashan, Madras, 1991, 279–323 | MR

[48] Li Fuan, “The structure of symplectic group over arbitrary commutative rings”, Acta Math. Sinica, New Series, 3:3 (1987), 247–255 | DOI | MR | Zbl

[49] Li Fuan, “The structure of orthogonal groups over arbitrary commutative rings”, Chinese Ann. Math. Ser. B, 10:3 (1989), 341–350 | MR | Zbl

[50] W. Lichtenstein, “A system of quadrics describing the orbit of the highest weight vector”, Proc. Amer. Math. Soc., 84:4 (1982), 605–608 | DOI | MR | Zbl

[51] H. Matsumoto, “Sur les sous-groupes arithmetiques des groupes semi-simples déployés”, Ann. Sci. Ecole Norm. Sup., 4ème sér., 1969, no. 2, 1–62 | MR | Zbl

[52] E. B. Plotkin, “On the stability of $\mathrm{K}_1$-functor for Chevalley groups of type $\mathrm{E}_7$”, J. Algebra, 210 (1998), 67–85 | DOI | MR | Zbl

[53] E. B. Plotkin, A. A. Semenov, N. A. Vavilov, “Visual basic representations: an atlas”, Int. J. Algebra and Computations, 8:1 (1998), 61–97 | DOI | MR

[54] M. R. Stein, “Generators, relations and coverings of Chevalley groups over commutative rings”, Amer. J. Math., 93:4 (1971), 965–1004 | DOI | MR | Zbl

[55] M. R. Stein, “Stability theorems for $\mathrm{K}_1$, $\mathrm{K}_2$ and related functors modeled on Chevalley groups”, Japan J. Math., 4:1 (1978), 77–108 | MR | Zbl

[56] A. V. Stepanov, N. A. Vavilov, “Decomposition of transvections: a Theme with variations”, K-theory, 19 (2000), 109–153 | DOI | MR | Zbl

[57] A. V. Stepanov, N. A. Vavilov, “On the length of commutators in Chevalley groups”, K-theory (to appear)

[58] K. Suzuki, “Normality of the elementary subgroups of twisted Chevalley groups over commutative rings”, J. Algebra, 175:3 (1995), 526–536 | DOI | MR | Zbl

[59] G. Taddei, “Normalité des groupes élémentaires dans les groupes de Chevalley sur un anneau”, Applications of algebraic K-theory to algebraic geometry and number theory, Part II, Contemp. Math., 55, 1986, 693–710 | MR | Zbl

[60] L. N. Vaserstein, “On the normal subgroups of the $\mathrm{GL}_n$ of a ring”, Lecture Notes Math., 854, Springer, 1981, 454–465 | MR

[61] L. N. Vaserstein, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J., 36:5 (1986), 219–230 | DOI | MR

[62] L. N. Vaserstein, “Normal subgroups of orthogonal groups over commutative rings”, Amer. J. Math., 110:5 (1988), 955–973 | DOI | MR | Zbl

[63] L. N. Vaserstein, “Normal subgroups of symplectic groups over rings”, $K$-theory, 2:5 (1989), 647–673 | DOI | MR | Zbl

[64] L. N. Vaserstein, You Hong, “Normal subgroups of classical groups over rings”, J. Pure Appl. Algebra, 105:1 (1995), 93–106 | DOI | MR

[65] N. A. Vavilov, “Structure of Chevalley groups over commutative rings”, Proc. Conf. Non-associative algebras and related topics (Hiroshima, 1990), World Sci. Publ., London et al., 1991, 219–335 | MR | Zbl

[66] N. A. Vavilov, “Intermediate subgroups in Chevalley groups”, Proc. Conf. Groups of Lie Type and their Geometries (Como, 1993), Cambridge Univ. Press, 1995, 233–280 | MR | Zbl

[67] N. A. Vavilov, “A third look at weight diagrams”, Rendiconti Sem. Mat. Univ. Padova, 204 (2000), 1–45 | MR

[68] N. A. Vavilov, “Do it yourself structure constants for Lie algebras of type $\operatorname{E}_l$”, Zap. nauchn. semin. POMI, 281, 2001, 60–104 | MR | Zbl

[69] N. A. Vavilov, E. B. Plotkin, “Chevalley groups over commutative rings. I: Elementary calculations”, Acta Applicandae Math., 45 (1996), 73–115 | DOI | MR

[70] J. S. Wilson, “The normal and subnormal structure of general linear groups”, Proc. Cambridge Phil. Soc., 71 (1972), 163–177 | DOI | MR | Zbl