Geometrical equivalence of nilpotent groups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 13, Tome 330 (2006), pp. 259-270 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper nilpotent torsion free groups are considered. Sufficient conditions are presented when the nilpotent torsion free group is geometrically equivalent to its Mal'tsev completion. Also some results are achieved in the describing of classes of geometrical equivalence of nilpotent class 2 torsion free groups with the small rank of center.
@article{ZNSL_2006_330_a14,
     author = {A. Tsurkov},
     title = {Geometrical equivalence of nilpotent groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {259--270},
     year = {2006},
     volume = {330},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a14/}
}
TY  - JOUR
AU  - A. Tsurkov
TI  - Geometrical equivalence of nilpotent groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 259
EP  - 270
VL  - 330
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a14/
LA  - en
ID  - ZNSL_2006_330_a14
ER  - 
%0 Journal Article
%A A. Tsurkov
%T Geometrical equivalence of nilpotent groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 259-270
%V 330
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a14/
%G en
%F ZNSL_2006_330_a14
A. Tsurkov. Geometrical equivalence of nilpotent groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 13, Tome 330 (2006), pp. 259-270. http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a14/

[1] Ju. A. Bahturrin, Lectures on Lie Algebras, Akademie-Verlag, Berlin, 1978 | MR

[2] G. Baumslag, “On the residual nilpotence of some varietal product”, Trans. Amer. Math. Soc., 109 (1963), 357–365 | DOI | MR | Zbl

[3] A. Berzins, “Geometrical equivalence of algebras”, Int. J. Algebra Comput., 11:4 (2001), 447–456 | DOI | MR | Zbl

[4] V. V. Bludov, B. V. Gusev, About geometrical equivalence of groups, Theses of report

[5] A. I. Budkin, “A lattice of quasivarieties of nilpotent groups”, Algebra and Logic, 33:1 (1994), 14–21 | DOI | MR | Zbl

[6] A. N. Fedorov, Sib. Mat. Zh., 21:6 (1980), 117–131 | MR | Zbl

[7] A. N. Fedorov, Mat. Zam., 40:5 (1986), 590–597 | MR | Zbl

[8] F. J. Grunewald, R. Scharlau, “A note on finitely generated torsion free nilpotent groups of class 2”, J. Algebra, 58 (1979), 162–175 | DOI | MR | Zbl

[9] R. A. Isakov, “O kvazimnogoobrazijah 2-stepenno nilpotentnyh grupp”, Izv. Akad. Nauk UzSSR, 3 (1976), 23–27 | MR | Zbl

[10] M. I. Kargapolov, Yu. I. Merzljakov, Fundamentals of the Theory of Groups, Springer Verlag, New York, 1979 | MR | Zbl

[11] B. Plotkin, “Algebraic logic, varieties of algebras and algebraic varieties”, Proc. Int. Alg. Conf. (St. Petersburg, 1995), Walter Gruyter, New York–London, 189–271 | MR

[12] B. Plotkin, “Varieties of algebras and algebraic varieties. Categories of algebraic varieties”, Siberian Adv. Math., 7:2 (1997), 64–97 | MR | Zbl

[13] B. Plotkin, Seven lectures on the Universal Algebraic Geometry, Preprint No 1. Jerusalem, Inst. of Math., Hebrew University, 2000–2001

[14] B. Plotkin, E. Plotkin, A. Tsurkov, “Geometrical equivalence of groups”, Commun. Algebra, 27:8 (1999), 4015–4025 | DOI | MR | Zbl

[15] S. A. Shakhova, “On the lattice of quasivarieties of nilpotent groups of class 2”, Siberian Adv. Math., 7:3 (1997), 98–125 | MR | Zbl