@article{ZNSL_2006_330_a12,
author = {N. S. Semenov},
title = {Hasse diagramms and motives of homogeneous projective varieties},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {236--246},
year = {2006},
volume = {330},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a12/}
}
N. S. Semenov. Hasse diagramms and motives of homogeneous projective varieties. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 13, Tome 330 (2006), pp. 236-246. http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a12/
[1] N.Bourbaki, Lie groups and Lie algebras, Ch. 4–6, Springer-Verlag, Berlin et al., 2002 | MR | Zbl
[2] R. Carter, Simple groups of Lie type, John Wiley Sons, 1972 | MR | Zbl
[3] V. Chernousov, A. Merkurjev, Motivic decomposition of projective homogeneous varieties and the Krull–Schmidt theorem, Preprint, 2004 | MR | Zbl
[4] V. Chernousov, S. Gille, A. Merkurjev, Motivic decomposition of isotropic projective homogeneous varieties, Preprint, 2003 | MR
[5] M. Demazure, “Désingularisation des variétés de Schubert généralisées”, Ann. Sci. École Norm. Sup. (4), 7 (1974), 53–88 | MR | Zbl
[6] W. Fulton, Intersection Theory, Second edition, Springer-Verlag, Berlin et al., 1998 | MR
[7] H. Hiller, Geometry of Coxeter Groups, Pitman, 1982 | MR | Zbl
[8] H. Hiller, “Combinatorics and intersection of Schubert varieties”, Comment. Math. Helv., 57:1 (1982), 47–59 | DOI | MR
[9] M. Kashiwara, “On crystal bases”, Canad. Math. Soc. Conf. Proc., 16 (1995), 155–197 | MR | Zbl
[10] B. Köck, “Chow motif and higher Chow theory of $G/P$”, Manuscripta Math., 70 (1991), 363–372 | DOI | MR | Zbl
[11] Y. Manin, “Correspondences, motives and monoidal transformations”, Mat. Sb., 77(119):4 (1968), 475–507 | MR | Zbl
[12] S. Nikolenko, N. Semenov, K. Zainoulline, Motivic decomposition of anisotropic varieties of type $\mathrm{F}_4$ and generalized Rost projectors, Preprint, 2005; http://www.math.uiuc.edu/K-theory/0726/
[13] E. Plotkin, A. Semenov, N. Vavilov, “Visual basic representations: an atlas”, Int. J. Alg. Comput., 8:1 (1998), 61–95 | DOI | MR | Zbl
[14] V. Popov, E. Vinberg, Invariant theory, Encyclop. Math. Sci., 55, Springer, 1994 | Zbl
[15] T. Springer, F. Veldkamp, “On Hjelmslev–Moufang planes”, Math. Z., 107 (1968), 249–263 | DOI | MR | Zbl
[16] N. Vavilov, “Structure of Chevalley groups over commutative rings”, Proc. Conf. Nonassociative Algebras and Related Topics, World Sci., London et al., 1991, 219–335 | MR | Zbl
[17] N. Vavilov, “A third look at weight diagrams”, Rendiconti Sem. Mat. Univ. Padova, 204 (2000), 1–45 | MR