Hasse diagramms and motives of homogeneous projective varieties
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 13, Tome 330 (2006), pp. 236-246 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The present paper continues the study of interrelations between Hasse diagrams and motives of projective homogeneous varieties. It contains combinatorial description of some multilinear invariants and a description of Chernousov–Gille–Merkurjev method of motivic decompositions.
@article{ZNSL_2006_330_a12,
     author = {N. S. Semenov},
     title = {Hasse diagramms and motives of homogeneous projective varieties},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {236--246},
     year = {2006},
     volume = {330},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a12/}
}
TY  - JOUR
AU  - N. S. Semenov
TI  - Hasse diagramms and motives of homogeneous projective varieties
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 236
EP  - 246
VL  - 330
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a12/
LA  - ru
ID  - ZNSL_2006_330_a12
ER  - 
%0 Journal Article
%A N. S. Semenov
%T Hasse diagramms and motives of homogeneous projective varieties
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 236-246
%V 330
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a12/
%G ru
%F ZNSL_2006_330_a12
N. S. Semenov. Hasse diagramms and motives of homogeneous projective varieties. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 13, Tome 330 (2006), pp. 236-246. http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a12/

[1] N.Bourbaki, Lie groups and Lie algebras, Ch. 4–6, Springer-Verlag, Berlin et al., 2002 | MR | Zbl

[2] R. Carter, Simple groups of Lie type, John Wiley Sons, 1972 | MR | Zbl

[3] V. Chernousov, A. Merkurjev, Motivic decomposition of projective homogeneous varieties and the Krull–Schmidt theorem, Preprint, 2004 | MR | Zbl

[4] V. Chernousov, S. Gille, A. Merkurjev, Motivic decomposition of isotropic projective homogeneous varieties, Preprint, 2003 | MR

[5] M. Demazure, “Désingularisation des variétés de Schubert généralisées”, Ann. Sci. École Norm. Sup. (4), 7 (1974), 53–88 | MR | Zbl

[6] W. Fulton, Intersection Theory, Second edition, Springer-Verlag, Berlin et al., 1998 | MR

[7] H. Hiller, Geometry of Coxeter Groups, Pitman, 1982 | MR | Zbl

[8] H. Hiller, “Combinatorics and intersection of Schubert varieties”, Comment. Math. Helv., 57:1 (1982), 47–59 | DOI | MR

[9] M. Kashiwara, “On crystal bases”, Canad. Math. Soc. Conf. Proc., 16 (1995), 155–197 | MR | Zbl

[10] B. Köck, “Chow motif and higher Chow theory of $G/P$”, Manuscripta Math., 70 (1991), 363–372 | DOI | MR | Zbl

[11] Y. Manin, “Correspondences, motives and monoidal transformations”, Mat. Sb., 77(119):4 (1968), 475–507 | MR | Zbl

[12] S. Nikolenko, N. Semenov, K. Zainoulline, Motivic decomposition of anisotropic varieties of type $\mathrm{F}_4$ and generalized Rost projectors, Preprint, 2005; http://www.math.uiuc.edu/K-theory/0726/

[13] E. Plotkin, A. Semenov, N. Vavilov, “Visual basic representations: an atlas”, Int. J. Alg. Comput., 8:1 (1998), 61–95 | DOI | MR | Zbl

[14] V. Popov, E. Vinberg, Invariant theory, Encyclop. Math. Sci., 55, Springer, 1994 | Zbl

[15] T. Springer, F. Veldkamp, “On Hjelmslev–Moufang planes”, Math. Z., 107 (1968), 249–263 | DOI | MR | Zbl

[16] N. Vavilov, “Structure of Chevalley groups over commutative rings”, Proc. Conf. Nonassociative Algebras and Related Topics, World Sci., London et al., 1991, 219–335 | MR | Zbl

[17] N. Vavilov, “A third look at weight diagrams”, Rendiconti Sem. Mat. Univ. Padova, 204 (2000), 1–45 | MR