On Grothendieck group of simply connected semisimple algebraic groups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 13, Tome 330 (2006), pp. 223-235 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The $K_0$ groups of simply connected semisimple algebraic groups are calculated. The triviality of Chow groups $CH^1$ and $CH^2$ of such groups is obtained as a corollary.
@article{ZNSL_2006_330_a11,
     author = {O. B. Podkopaev},
     title = {On {Grothendieck} group of simply connected semisimple algebraic groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {223--235},
     year = {2006},
     volume = {330},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a11/}
}
TY  - JOUR
AU  - O. B. Podkopaev
TI  - On Grothendieck group of simply connected semisimple algebraic groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 223
EP  - 235
VL  - 330
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a11/
LA  - ru
ID  - ZNSL_2006_330_a11
ER  - 
%0 Journal Article
%A O. B. Podkopaev
%T On Grothendieck group of simply connected semisimple algebraic groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 223-235
%V 330
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a11/
%G ru
%F ZNSL_2006_330_a11
O. B. Podkopaev. On Grothendieck group of simply connected semisimple algebraic groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 13, Tome 330 (2006), pp. 223-235. http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a11/

[1] A. Borel, Lineinye algebraicheskie gruppy, Mir, M., 1972 | MR | Zbl

[2] N. Burbaki, Algebra: moduli, koltsa, formy, Nauka, M., 1966 | MR

[3] V. E. Voskresenskii, Algebraicheskie tory, Nauka, M., 1977 | MR

[4] D. Quillen, “Higher algebraic $K$-theory, I”, Lect. Notes Math., 341, Springer-Verlag, Berlin et al., 1973, 85–147 | MR

[5] A. S. Merkurev, “Sravnenie ekvivariantnoi i obyknovennoi $K$-teorii algebraicheskikh mnogoobrazii”, Algebra i analiz, 9:4 (1997), 175–214 | MR

[6] Dzh. Miln, Etalnye kogomologii, Mir, M., 1983 | MR

[7] I. A. Panin, “On the algebraic $K$-theory of twisted flag varieties”, $K$-Theory, 8 (1994), 541–585 | DOI | MR | Zbl

[8] I. A. Panin, “Printsip rasschepleniya i $K$-teoriya odnosvyaznykh poluprostykh algebraicheskikh grupp”, Algebra i analiz, 10:1 (1998), 88–131 | MR | Zbl

[9] V. P. Platonov, A. S. Rapinchuk, Algebraicheskie gruppy i teoriya chisel, Nauka, M., 1991 | MR

[10] Zh. P. Serr, Kogomologii Galua, Mir, M., 1968 | MR

[11] R. Thomason, “Algebraic $K$-theory of group scheme actions”, Algebraic Topology and Algebraic $K$-theory (Princeton, NJ, 1983), Princeton Univ. Press, Princeton, NJ, 1987, 539–563 | MR | Zbl

[12] Dzh. Khamfri, Lineinye algebraicheskie gruppy, Nauka, M., 1980 | MR

[13] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, Berlin et al., 1972 | MR | Zbl

[14] C. Scheiderer, Real and Étale Cohomology, Springer-Verlag, Berlin et al., 1994 | MR | Zbl