@article{ZNSL_2006_330_a10,
author = {B. I. Plotkin},
title = {Geometrical equivalence, geometrical similarity, and geometrical compatibility of algebras},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {201--222},
year = {2006},
volume = {330},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a10/}
}
B. I. Plotkin. Geometrical equivalence, geometrical similarity, and geometrical compatibility of algebras. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 13, Tome 330 (2006), pp. 201-222. http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a10/
[1] A. Anan'in, “Representable varieties of algebras”, Algebra Logic, 28:2 (1990), 87–97 | DOI | MR
[2] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups”, J. Algebra, 219 (1999), 16–79 | DOI | MR | Zbl
[3] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups”, Algorithmic problems in groups and semigroups, Birkhauser, 1999, 35–51 | MR
[4] G. Baumslag, A. Myasnikov, V. Roman'kov, “Two theorems about equationally noetherian groups”, J. Algebra, 194 (1997), 654–664 | DOI | MR | Zbl
[5] R. Göbel, S. Shelah, “Radicals and Plotkin's problem concerning geometrically equivalent groups”, Proc. Amer. Math. Soc., 130 (2002), 673–674 | DOI | MR | Zbl
[6] V. A. Gorbunov, Algebraic theory of quasivarieties, Doctoral Thesis Novosibirsk (1996), Plenum Publ. Co, 1998 | MR
[7] G. Grätzer, H. Lakser, “A note on implicational class generated by a class of structures”, Can. Math. Bull., 16:4 (1973), 603–605 | DOI | MR | Zbl
[8] V. Guba, “Equivalence of infinite systems of equations in free groups and semigroups to finite systems”, Mat. Zametki, 40:3 (1986), 321–324 | MR | Zbl
[9] O. Kharlampovich, A. Myasnikov, “Irreducible affine varieties over a free group. I: Irreducibility of quadratic equations and Nullstellensatz”, J. Algebra, 200:2 (1998), 472–516 | DOI | MR | Zbl
[10] O. Kharlampovich, A. Myasnikov, “Irreducible affine varieties over a free group, II”, J. Algebra, 200:2 (1998), 517–570 | DOI | MR | Zbl
[11] A. Lichtman, D. Passman, “Finitely generated simple algebras: A question of B. I. Plotkin” (to appear)
[12] A. I. Mal'cev, Algebraic systems, North Holland, 1973
[13] A. I. Mal'cev, “Some remarks on quasivarieties of algebraic structures”, Algebra Logic, 5:3 (1966), 3–9 | MR
[14] G. Mashevitzky, B. Plotkin, E. Plotkin, “Automorphisms of categories of free algebras of varieties”, Electronic Research Announcements Amer. Math. Soc., 8 (2002), 1–10 | DOI | MR
[15] G. Mashevitzky, B. Plotkin, E. Plotkin, “Automorphisms of categories of free Lie algebras” (to appear)
[16] S. MacLane, Categories for the working mathematician, Springer, Berlin et al., 1971 | MR | Zbl
[17] A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups, I”, J. Algebra, 219:1 (1999), 16–79 | DOI | MR | Zbl
[18] A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. II: Logical foundations”, J. Algebra, 234:1 (2000), 225–276 | DOI | MR | Zbl
[19] D. Nikolova, B. Plotkin, “Some notes on universal algebraic geometry”, Algebra. Proc. International Conf. on Algebra on the Occasion of the 90th Birthday of A. G. Kurosh (Moscow, 1998), Walter De Gruyter Publ., Berlin, 1999, 237–261 | MR
[20] B. Plotkin, “Algebraic logic, varieties of algebras and algebraic varieties”, Proc. Int. Alg. Conf. (St. Petersburg, 1995), St.Petersburg, 1999, 189–271 | MR
[21] B. Plotkin, Seven lectures on the universal algebraic geometry, arXiv: /math.GM/0204245
[22] B. Plotkin, “Infinitary quasi-identities and infinitary quasivarieties”, Proc. Latvian Acad. Sci., Sec. B, 56 (2002) (to appear) | MR
[23] B. Plotkin, “Algebras with the same (algebraic) geometry”, Proceedings MIAN, 242 (2003) (to appear) | MR | Zbl
[24] B. Plotkin, E. Plotkin, A. Tsurkov, “Geometrical equivalence of groups”, Commun. Algebra, 27:8 (1999), 4015–4025 | DOI | MR | Zbl
[25] Z. Sela, “Diophantine geometry over groups, I”, Publ. Math. IHES, 93 (2001), 31–105 | DOI | MR | Zbl
[26] G. Zhitomirskii, “Autoequivalences of categories of free algebras of varieties” (to appear)