On invariants of stable equivalence of symmetric special biserial algebras
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 13, Tome 330 (2006), pp. 5-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we consider symmetric special biserial algebras and show that some combinatorial data can be obtained from the stable category of such algebras. As a consequence, we get invariants of the stable equivalence of symmetric special biserial algebras.
@article{ZNSL_2006_330_a0,
     author = {M. A. Antipov},
     title = {On invariants of stable equivalence of symmetric special biserial algebras},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--28},
     year = {2006},
     volume = {330},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a0/}
}
TY  - JOUR
AU  - M. A. Antipov
TI  - On invariants of stable equivalence of symmetric special biserial algebras
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 5
EP  - 28
VL  - 330
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a0/
LA  - ru
ID  - ZNSL_2006_330_a0
ER  - 
%0 Journal Article
%A M. A. Antipov
%T On invariants of stable equivalence of symmetric special biserial algebras
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 5-28
%V 330
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a0/
%G ru
%F ZNSL_2006_330_a0
M. A. Antipov. On invariants of stable equivalence of symmetric special biserial algebras. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 13, Tome 330 (2006), pp. 5-28. http://geodesic.mathdoc.fr/item/ZNSL_2006_330_a0/

[1] M. A. Antipov, “Gruppa Grotendika stabilnoi kategorii simmetricheskoi spetsialnoi biryadnoi algebry”, Zap. nauchn. semin. POMI, 321, 2005, 5–12 | MR | Zbl

[2] M. A. Antipov, A. I. Generalov, “Konechnaya porozhdennost algebr Ionedy simmetricheskikh spetsialnykh biryadnykh algebr”, Algebra i analiz, 17:3 (2005), 1–23 | MR

[3] M. Auslander, I. Reiten, “Representation theory of artin algebras, III”, Commun. Algebra, 3 (1975), 239–294 | DOI | MR | Zbl

[4] M. C. R. Butler, C. M. Ringel, “AR-sequences with few middle terms and applications to string algebras”, Commun. Algebra, 15:1–2 (1987), 145–179 | DOI | MR | Zbl

[5] K. Erdmann, Blocks of tame representation type and related algebras, Lecture Notes in Math., 1428, Springer-Verlag, Berlin et al., 1990 | MR | Zbl

[6] Th. Holm, “Derived equivalence classification of algebras of dihedral, semidihedral, and quaternion type”, J. Algebra, 211:1 (1999), 159–205 | DOI | MR | Zbl

[7] Z. Pogorzały, “On a construction of algebras stably equivalent to selfinjective special biserial algebras”, Ann. Sci. Math. Quebec, 17:1 (1993), 65–97 | MR | Zbl

[8] H. Krause, “Maps between tree and band modules”, J. Algebra, 137:1 (1991), 186–195 | DOI | MR