@article{ZNSL_2005_329_a9,
author = {V. V. Makeev},
title = {Geometry of finite-dimensional normed spaces and continuous functions on the {Euclidean} sphere},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {107--117},
year = {2005},
volume = {329},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a9/}
}
V. V. Makeev. Geometry of finite-dimensional normed spaces and continuous functions on the Euclidean sphere. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 9, Tome 329 (2005), pp. 107-117. http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a9/
[1] F. J. Dyson, “Continuous functions defined on spheres”, Ann. Math., 54 (1951), 534–536 | DOI | MR | Zbl
[2] T. Hausel, E. Makai, A. Szűcz, “Inscribing cubes and covering by rhombic dodecahedra via equivariant topology”, Mathematica, 2001
[3] A. Hinrichs, C. Richter, New counterexamples to Knaster's conjecture, Preprint, 2003 | MR
[4] B. S. Kashin, S. J. Szarek, “The Knaster problem and the geometry of high dimensional cubes”, C. R. Acad. Sci. Paris, Ser. 1, 336 (2003), 931–936 | MR | Zbl
[5] V. V. Makeev, “Zadacha Knastera o nepreryvnykh otobrazheniyakh sfery v evklidovo prostranstvo”, Zap. nauchn. semin. LOMI, 167, 1987, 169–178 | MR
[6] V. V. Makeev, “Neskolko teorem o delenii nepreryvno raspredelennoi massy”, Zap. nauch. semin. POMI, 329, 2006, 92–106 | MR | Zbl
[7] R. Rattray, “An antipodal point, orthogonal point theorem”, Ann. Math., 60 (1954), 502–512 | DOI | MR | Zbl