Theorems on equipartition of a continuous mass distribution
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 9, Tome 329 (2005), pp. 92-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Here are three samples of results. Let $\mathbf m$ be a finite continuous mass distribution (an FCMD) in $\mathbb R^2$, and let $\ell=\{\ell_1,\dots,\ell_5\subset\mathbb R^2\}$ be 5 rays with common endpoint such that the sum of any two adjacent angles between them is at most $\pi$. Then $\mathbf m$ can be sibdivided into 5 parts at any prescribed ratio by an affine image of $\ell$. For each FCMD $\mathbf m$ in $\mathbb R^n$ there exist $n$ mutually orthogonal hyperplanes any two of which subdivide $\mathbf m$ into 4 equal parts. For any two FCMD's $\mathbf m_1$ and $\mathbf m_2$ in $\mathbb R^n$ with common center of symmetry $O$ there exist $n$ hyperplanes through $O$ any two of which subdivide both $\mathbf m_1$ and $\mathbf m_2$ into 4 equal parts.
@article{ZNSL_2005_329_a8,
     author = {V. V. Makeev},
     title = {Theorems on equipartition of a~continuous mass distribution},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {92--106},
     year = {2005},
     volume = {329},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a8/}
}
TY  - JOUR
AU  - V. V. Makeev
TI  - Theorems on equipartition of a continuous mass distribution
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 92
EP  - 106
VL  - 329
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a8/
LA  - ru
ID  - ZNSL_2005_329_a8
ER  - 
%0 Journal Article
%A V. V. Makeev
%T Theorems on equipartition of a continuous mass distribution
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 92-106
%V 329
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a8/
%G ru
%F ZNSL_2005_329_a8
V. V. Makeev. Theorems on equipartition of a continuous mass distribution. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 9, Tome 329 (2005), pp. 92-106. http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a8/

[1] B. Gryunbaum B., Etyudy po kombinatornoi geometrii i teorii vypuklykh tel, Nauka, M., 1971 | MR | Zbl

[2] R. Buck, E. Buck, “Equipartition of convex sets”, Math. Mag., 22 (1948–1949), 195–198 | DOI | MR

[3] V. V. Makeev, “Shestidolnye razbieniya trekhmernogo prostranstva”, Vestnik LGU, 1988, no. 2, 31–34 | MR

[4] V. V. Makeev, “Nekotorye spetsialnye konfiguratsii ploskostei, svyazannye s vypuklymi kompaktami”, Zap. nauchn. semin. POMI, 252, 1998, 165–174 | MR

[5] H. Hadwiger, “Simultane Vierteilung zweier Körper”, Arch. Math., 17 (1966), 274–278 | DOI | MR | Zbl

[6] V. V. Makeev, “O delenii nepreryvno raspredelennoi massy”, Zap. nauchn. semin. POMI, 299, 2003, 228–240 | MR

[7] E. Fadell, S. Husseini, “An ideal-valued cohomological index theory with applications to Borsuk–Ulam and Bourgin–Yang theorems”, Ergodic Theory Dynamical Systems, 8 (1998), 73–85 | DOI | MR

[8] R. T. Z̆ivalevic̆, S. T. Vrec̆ica, “An extension of the ham sandwich theorem”, Bull. London Math. Soc., 22 (1990), 183–186 | DOI | MR

[9] V. L. Dolnikov, “Transversali semeistv mnozhestv v $\mathbb{R}^n$ i svyaz mezhdu teoremami Khelli i Borsuka”, Mat. sb., 184:5 (1993), 111–132 | MR