Equilateral simplices in normed 4-space
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 9, Tome 329 (2005), pp. 88-91
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $E$ be a 4-dimensional real normed space, $x\ge3/4$ a positive number, and $P\subset E$ a 3-plane. It is proved that there exist 4 equidistant points $A_1$, $A_2$, $A_3$, $A_4\in P$
and a point $A_5\in E$ such that $\|A_5A_i\|=x\cdot\|A_1A_2\|$ for $i=1,2,3,4$.
In particular, $E$ contains an equilateral simplex.
@article{ZNSL_2005_329_a7,
author = {V. V. Makeev},
title = {Equilateral simplices in normed 4-space},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {88--91},
publisher = {mathdoc},
volume = {329},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a7/}
}
V. V. Makeev. Equilateral simplices in normed 4-space. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 9, Tome 329 (2005), pp. 88-91. http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a7/