Equilateral simplices in normed 4-space
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 9, Tome 329 (2005), pp. 88-91
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $E$ be a 4-dimensional real normed space, $x\ge3/4$ a positive number, and $P\subset E$ a 3-plane. It is proved that there exist 4 equidistant points $A_1$, $A_2$, $A_3$, $A_4\in P$ and a point $A_5\in E$ such that $\|A_5A_i\|=x\cdot\|A_1A_2\|$ for $i=1,2,3,4$. In particular, $E$ contains an equilateral simplex.
@article{ZNSL_2005_329_a7,
author = {V. V. Makeev},
title = {Equilateral simplices in normed 4-space},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {88--91},
year = {2005},
volume = {329},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a7/}
}
V. V. Makeev. Equilateral simplices in normed 4-space. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 9, Tome 329 (2005), pp. 88-91. http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a7/
[1] Petty C., “Equilateral sets in Minkowski spaces”, Proc. Amer. Math. Soc., 27 (1971), 369–374 | DOI | MR
[2] Brass P., “On equilateral simplices in normed spaces”, Beiträge Algebra Geom., 40 (1999), 303–307 | MR | Zbl
[3] Makeev V. V., “O nekotorykh geometricheskikh svoistvakh vypuklykh trekhmernykh tel”, Algebra i analiz, 14:5 (2002), 96–109 | MR | Zbl
[4] Makeev V. V., “Trekhmernye mnogogranniki, vpisannye i opisannye vokrug vypuklykh kompaktov, 2”, Algebra i analiz, 13:5 (2001), 110–133 | MR | Zbl
[5] Makeev V. V., “Affinno-vpisannye i affinno-opisannye mnogougolniki i mnogogranniki”, Zap. nauch. semin. POMI, 231, 1995, 286–298 | MR