Parallelepipeds circumscribed about a~convex body in 3-space
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 9, Tome 329 (2005), pp. 79-87
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that each convex body $K\subset\mathbb R^3$ of volume $V(K)$ is contained
in a parallelepiped of volume $3\sqrt2\,V(K)$.
@article{ZNSL_2005_329_a6,
author = {V. V. Makeev},
title = {Parallelepipeds circumscribed about a~convex body in 3-space},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {79--87},
publisher = {mathdoc},
volume = {329},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a6/}
}
V. V. Makeev. Parallelepipeds circumscribed about a~convex body in 3-space. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 9, Tome 329 (2005), pp. 79-87. http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a6/