Parallelepipeds circumscribed about a convex body in 3-space
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 9, Tome 329 (2005), pp. 79-87
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that each convex body $K\subset\mathbb R^3$ of volume $V(K)$ is contained in a parallelepiped of volume $3\sqrt2\,V(K)$.
@article{ZNSL_2005_329_a6,
author = {V. V. Makeev},
title = {Parallelepipeds circumscribed about a~convex body in 3-space},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {79--87},
year = {2005},
volume = {329},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a6/}
}
V. V. Makeev. Parallelepipeds circumscribed about a convex body in 3-space. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 9, Tome 329 (2005), pp. 79-87. http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a6/
[1] A. Bielecki, K. Radziszewski, “Sur les parallélépipédes inscrits dans les corps convexes”, Ann. Univ. Mariae Curie–Sklodowska, Sect. A, 8 (1954), 101–103 | MR
[2] V. V. Makeev, “O priblizhenii trekhmernogo vypuklogo tela tsilindrami”, Algebra i analiz, 17:2 (2005), 133–144 | MR
[3] V. V. Makeev, “Affinno-vpisannye i affinno-opisannye mnogougolniki i mnogogranniki”, Zap. nauchn. semin. POMI, 231, 1995, 286–298 | MR
[4] V. V. Makeev, “O nekotorykh geometricheskikh svoistvakh vypuklykh trekhmernykh tel”, Algebra i analiz, 14:5 (2002), 96–109 | MR | Zbl