Asphericity of shadows of a~convex body
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 9, Tome 329 (2005), pp. 67-78

Voir la notice de l'article provenant de la source Math-Net.Ru

A shadow is a parallel projection $F$ of a body $K$ to a plane. $F$ is $\epsilon$-aspheric if the boundary $\partial F$ lies in a circular ring with center at $O$ and ratio of radii equal to $1+\epsilon$. $F$ is $\epsilon$-aspheric for a part of $\alpha$ if the same is true for the part of $\partial F$ lying inside an angle of $2\alpha\pi$ with vertex at $O$ (or within the union of two vertical angles of $\alpha\pi$ if $K$ is centrally symmetric). It is proved that each convex body $K\subset\mathbb R^3$ has a $(\sqrt 2-1)$-aspheric shadow and a shadow $(\sec\pi/5-1)$-aspheric for a part of 4/5. If $K$ is centrally symmetric, then $K$ has a $(2/\sqrt3-1)$-aspheric shadow and a shadow $(\sec\pi/7-1)$-aspheric for a part of 6/7.
@article{ZNSL_2005_329_a5,
     author = {V. V. Makeev},
     title = {Asphericity of shadows of a~convex body},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {67--78},
     publisher = {mathdoc},
     volume = {329},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a5/}
}
TY  - JOUR
AU  - V. V. Makeev
TI  - Asphericity of shadows of a~convex body
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 67
EP  - 78
VL  - 329
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a5/
LA  - ru
ID  - ZNSL_2005_329_a5
ER  - 
%0 Journal Article
%A V. V. Makeev
%T Asphericity of shadows of a~convex body
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 67-78
%V 329
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a5/
%G ru
%F ZNSL_2005_329_a5
V. V. Makeev. Asphericity of shadows of a~convex body. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 9, Tome 329 (2005), pp. 67-78. http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a5/