Isometric equivalence of directions in Riemannian symmetric spaces
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 9, Tome 329 (2005), pp. 56-57
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that there exists an isometry of the real Graccmann manifold that puts into coincidence two one-dimensional tangent directions of a totally geodesic 2-surface with nonzero Gauss curvature.
@article{ZNSL_2005_329_a3,
author = {S. E. Kozlov},
title = {Isometric equivalence of directions in {Riemannian} symmetric spaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {56--57},
publisher = {mathdoc},
volume = {329},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a3/}
}
S. E. Kozlov. Isometric equivalence of directions in Riemannian symmetric spaces. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 9, Tome 329 (2005), pp. 56-57. http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a3/