Isometric equivalence of directions in Riemannian symmetric spaces
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 9, Tome 329 (2005), pp. 56-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proved that there exists an isometry of the real Graccmann manifold that puts into coincidence two one-dimensional tangent directions of a totally geodesic 2-surface with nonzero Gauss curvature.
@article{ZNSL_2005_329_a3,
     author = {S. E. Kozlov},
     title = {Isometric equivalence of directions in {Riemannian} symmetric spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {56--57},
     year = {2005},
     volume = {329},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a3/}
}
TY  - JOUR
AU  - S. E. Kozlov
TI  - Isometric equivalence of directions in Riemannian symmetric spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 56
EP  - 57
VL  - 329
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a3/
LA  - ru
ID  - ZNSL_2005_329_a3
ER  - 
%0 Journal Article
%A S. E. Kozlov
%T Isometric equivalence of directions in Riemannian symmetric spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 56-57
%V 329
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a3/
%G ru
%F ZNSL_2005_329_a3
S. E. Kozlov. Isometric equivalence of directions in Riemannian symmetric spaces. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 9, Tome 329 (2005), pp. 56-57. http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a3/

[1] S. E. Kozlov, “Geometriya veschestvennykh grassmanovykh mnogoobrazii”, Zap. nauchn. semin. POMI, 246 (1997), 84–107 | MR | Zbl