Mappings of the sphere to a simply connected space
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 9, Tome 329 (2005), pp. 159-194
Cet article a éte moissonné depuis la source Math-Net.Ru
Fix an $m\in\mathbb N$, $m\ge2$. Let $Y$ be a simply connected pointed CW-complex, and let $B$ be a finite set of continuous mappings $a\colon S^m\to Y$ respecting the marked points. Let $\Gamma(a)\subset S^m\times Y$ be the graph of $a$, and let $[a]\in\pi_m(Y)$ be the homotopy class of $a$. Then for some $r\in\mathbb N$ depending on $m$ only, there exist a finite set $E\subset S^m\times Y$ and a mapping $k\colon E(r)=\{\,F\subset E:|F|\le r\,\}\to\pi_m(Y)$ such that for each $a\in B$ we have $$ [a]=\sum_{F\in E(r):F\subset\Gamma(a)}k(F). $$
@article{ZNSL_2005_329_a12,
author = {S. S. Podkorytov},
title = {Mappings of the sphere to a simply connected space},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {159--194},
year = {2005},
volume = {329},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a12/}
}
S. S. Podkorytov. Mappings of the sphere to a simply connected space. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 9, Tome 329 (2005), pp. 159-194. http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a12/
[1] M. Minskii, S. Peipert, Perseptrony, Mir, 1971 | Zbl
[2] S. S. Podkorytov, “Ob otobrazheniyakh sfery v odnosvyaznoe prostranstvo s konechno porozhdennymi gomotopicheskimi gruppami”, Algebra i analiz, 16:4 (2004), 153–192 | MR | Zbl
[3] P. G. Goerss, J. F. Jardine, Simplicial homotopy theory, Birkhäuser, 1999 | MR | Zbl
[4] M. Goussarov, M. Polyak, O. Viro, “Finite-type invariants of classical and virtual knots”, Topology, 39 (2000), 1045–1068 | DOI | MR | Zbl
[5] I. B. S. Passi, Group rings and their augmentation ideals, Lect. Notes Math., 715, Springer, 1979 | MR | Zbl