Mappings of the sphere to a simply connected space
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 9, Tome 329 (2005), pp. 159-194

Voir la notice de l'article provenant de la source Math-Net.Ru

Fix an $m\in\mathbb N$, $m\ge2$. Let $Y$ be a simply connected pointed CW-complex, and let $B$ be a finite set of continuous mappings $a\colon S^m\to Y$ respecting the marked points. Let $\Gamma(a)\subset S^m\times Y$ be the graph of $a$, and let $[a]\in\pi_m(Y)$ be the homotopy class of $a$. Then for some $r\in\mathbb N$ depending on $m$ only, there exist a finite set $E\subset S^m\times Y$ and a mapping $k\colon E(r)=\{\,F\subset E:|F|\le r\,\}\to\pi_m(Y)$ such that for each $a\in B$ we have $$ [a]=\sum_{F\in E(r):F\subset\Gamma(a)}k(F). $$
@article{ZNSL_2005_329_a12,
     author = {S. S. Podkorytov},
     title = {Mappings of the sphere to a simply connected space},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {159--194},
     publisher = {mathdoc},
     volume = {329},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a12/}
}
TY  - JOUR
AU  - S. S. Podkorytov
TI  - Mappings of the sphere to a simply connected space
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 159
EP  - 194
VL  - 329
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a12/
LA  - ru
ID  - ZNSL_2005_329_a12
ER  - 
%0 Journal Article
%A S. S. Podkorytov
%T Mappings of the sphere to a simply connected space
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 159-194
%V 329
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a12/
%G ru
%F ZNSL_2005_329_a12
S. S. Podkorytov. Mappings of the sphere to a simply connected space. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 9, Tome 329 (2005), pp. 159-194. http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a12/