Canonical representation of tangent vectors of Grassmannians
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 9, Tome 329 (2005), pp. 147-158 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The structure of the tangent bundle of the real Grassmann manifold $G^+_{p,n}$ under the Plücker embedding (in the exterior algebra of the initial Euclidean space) is studied. Explicit expressions for the relation between decompositions of a tangent vector with respect to different bases of the tangent space are obtained, and a constructive method yielding the canonical (= simplest) decomposition is presented.
@article{ZNSL_2005_329_a11,
     author = {M. Yu. Nikanorova},
     title = {Canonical representation of tangent vectors of {Grassmannians}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {147--158},
     year = {2005},
     volume = {329},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a11/}
}
TY  - JOUR
AU  - M. Yu. Nikanorova
TI  - Canonical representation of tangent vectors of Grassmannians
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 147
EP  - 158
VL  - 329
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a11/
LA  - ru
ID  - ZNSL_2005_329_a11
ER  - 
%0 Journal Article
%A M. Yu. Nikanorova
%T Canonical representation of tangent vectors of Grassmannians
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 147-158
%V 329
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a11/
%G ru
%F ZNSL_2005_329_a11
M. Yu. Nikanorova. Canonical representation of tangent vectors of Grassmannians. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 9, Tome 329 (2005), pp. 147-158. http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a11/

[1] S. E. Kozlov, “Geometriya veschestvenykh grassmanovykh mnogoobrazii, I, II”, Zap. nauchn. semin. POMI, 246, 1997, 84–107 | MR | Zbl

[2] S. E. Kozlov, “Geometriya veschestvenykh grassmanovykh mnogoobrazii, III”, Zap. nauchn. semin. POMI, 246, 1997, 108–129 | Zbl

[3] A. A. Borisenko, Yu. N. Nikolaevskii, “Mnogoobraziya Grassmana i grassmanov obraz mnogoobrazii”, Uspekhi mat. nauk, 46:2 (1991), 41–81 | MR

[4] E. Cartan, Oeuvres completes, I, Paris, 1952 | MR

[5] K. Leichtweiss, “Zur Riemannschen Geometrie in Grassmannschen Mannigfaltigkeiten”, Math. Z., 76 (1961), 334–366 | DOI | MR | Zbl

[6] S. E. Kozlov, “Ortogonalno invariantnye rimanovy metriki na veschestvennykh grassmanovykh mnogoobraziyakh”, Mat. fiz. Analiz. Geometriya, 4:1–2 (1997) | MR

[7] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1966 | MR

[8] S. E. Kozlov, “Geometriya veschestvenykh grassmanovykh mnogoobrazii, V”, Zap. nauchn. semin. POMI, 252, 1998, 104–120