A conic and an $M$-quintic with a point at infinity
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 9, Tome 329 (2005), pp. 14-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Topological classification of plane projective real algebraic curves of degree 7 that split into a product of two $M$-factors of degrees 2 and 5 is considered. A list of 153 possible topological models, 53 of which are realized, is presented. Proofs are sketched.
@article{ZNSL_2005_329_a1,
     author = {M. A. Gushchin},
     title = {A conic and an $M$-quintic with a point at infinity},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {14--27},
     year = {2005},
     volume = {329},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a1/}
}
TY  - JOUR
AU  - M. A. Gushchin
TI  - A conic and an $M$-quintic with a point at infinity
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 14
EP  - 27
VL  - 329
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a1/
LA  - ru
ID  - ZNSL_2005_329_a1
ER  - 
%0 Journal Article
%A M. A. Gushchin
%T A conic and an $M$-quintic with a point at infinity
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 14-27
%V 329
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a1/
%G ru
%F ZNSL_2005_329_a1
M. A. Gushchin. A conic and an $M$-quintic with a point at infinity. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 9, Tome 329 (2005), pp. 14-27. http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a1/

[1] A. A. Binstein, G. M. Polotovskii, “On the mutual arrangements of a conic and a quintic in the real projective plane”, Amer. Math. Soc. Transl., 200, 2000, 63–72 | MR | Zbl

[2] S. Yu. Orevkov, “Link theory and oval arrangements of real algebraic curves”, Topology, 38 (1999), 779–810 | DOI | MR | Zbl

[3] G. M. Polotovskii, “Katalog $M$-raspadayuschikhsya krivykh 6-go poryadka”, DAN SSSR, 236 (1977), 548–551 | MR | Zbl

[4] A. B. Korchagin, G. M. Polotovskiy, “On arrangements of a plane real quintic curve with respect to a pair of lines”, Commun. Contemp. Math., 5 (2003), 1–24 | DOI | MR | Zbl

[5] M. A. Guschin, A. N. Korobeinikov, G. M. Polotovskii, “Postroenie vzaimnykh raspolozhenii kubiki i kvartiki metodom kusochnogo konstruirovaniya”, Zap. nauchn. semin. POMI, 267, 2000, 119–132 | Zbl