A conic and an $M$-quintic with a point at infinity
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 9, Tome 329 (2005), pp. 14-27

Voir la notice de l'article provenant de la source Math-Net.Ru

Topological classification of plane projective real algebraic curves of degree 7 that split into a product of two $M$-factors of degrees 2 and 5 is considered. A list of 153 possible topological models, 53 of which are realized, is presented. Proofs are sketched.
@article{ZNSL_2005_329_a1,
     author = {M. A. Gushchin},
     title = {A conic and an $M$-quintic with a point at infinity},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {14--27},
     publisher = {mathdoc},
     volume = {329},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a1/}
}
TY  - JOUR
AU  - M. A. Gushchin
TI  - A conic and an $M$-quintic with a point at infinity
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 14
EP  - 27
VL  - 329
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a1/
LA  - ru
ID  - ZNSL_2005_329_a1
ER  - 
%0 Journal Article
%A M. A. Gushchin
%T A conic and an $M$-quintic with a point at infinity
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 14-27
%V 329
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a1/
%G ru
%F ZNSL_2005_329_a1
M. A. Gushchin. A conic and an $M$-quintic with a point at infinity. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 9, Tome 329 (2005), pp. 14-27. http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a1/