@article{ZNSL_2005_329_a1,
author = {M. A. Gushchin},
title = {A conic and an $M$-quintic with a point at infinity},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {14--27},
year = {2005},
volume = {329},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a1/}
}
M. A. Gushchin. A conic and an $M$-quintic with a point at infinity. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 9, Tome 329 (2005), pp. 14-27. http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a1/
[1] A. A. Binstein, G. M. Polotovskii, “On the mutual arrangements of a conic and a quintic in the real projective plane”, Amer. Math. Soc. Transl., 200, 2000, 63–72 | MR | Zbl
[2] S. Yu. Orevkov, “Link theory and oval arrangements of real algebraic curves”, Topology, 38 (1999), 779–810 | DOI | MR | Zbl
[3] G. M. Polotovskii, “Katalog $M$-raspadayuschikhsya krivykh 6-go poryadka”, DAN SSSR, 236 (1977), 548–551 | MR | Zbl
[4] A. B. Korchagin, G. M. Polotovskiy, “On arrangements of a plane real quintic curve with respect to a pair of lines”, Commun. Contemp. Math., 5 (2003), 1–24 | DOI | MR | Zbl
[5] M. A. Guschin, A. N. Korobeinikov, G. M. Polotovskii, “Postroenie vzaimnykh raspolozhenii kubiki i kvartiki metodom kusochnogo konstruirovaniya”, Zap. nauchn. semin. POMI, 267, 2000, 119–132 | Zbl