Large deviations for sample paths of Gaussian processes quadratic variations
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 9, Tome 328 (2005), pp. 169-181

Voir la notice de l'article provenant de la source Math-Net.Ru

We show a functional large deviations principle for the family of random functions $$ \left\{V_n(x)=\sum_{k=1}^{[nx]}(Z_{k/n}-Z_{k-1/n})^2,\ x\in[0,1]\right\}, $$ where $\{Z_t,\,t\in[0,1]\}$ is a real valued centered Gaussian process.
@article{ZNSL_2005_328_a9,
     author = {O. Perrin and M. Zani},
     title = {Large deviations for sample paths of {Gaussian} processes quadratic variations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {169--181},
     publisher = {mathdoc},
     volume = {328},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a9/}
}
TY  - JOUR
AU  - O. Perrin
AU  - M. Zani
TI  - Large deviations for sample paths of Gaussian processes quadratic variations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 169
EP  - 181
VL  - 328
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a9/
LA  - en
ID  - ZNSL_2005_328_a9
ER  - 
%0 Journal Article
%A O. Perrin
%A M. Zani
%T Large deviations for sample paths of Gaussian processes quadratic variations
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 169-181
%V 328
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a9/
%G en
%F ZNSL_2005_328_a9
O. Perrin; M. Zani. Large deviations for sample paths of Gaussian processes quadratic variations. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 9, Tome 328 (2005), pp. 169-181. http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a9/