Large deviations for sample paths of Gaussian processes quadratic variations
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 9, Tome 328 (2005), pp. 169-181 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We show a functional large deviations principle for the family of random functions $$ \left\{V_n(x)=\sum_{k=1}^{[nx]}(Z_{k/n}-Z_{k-1/n})^2,\ x\in[0,1]\right\}, $$ where $\{Z_t,\,t\in[0,1]\}$ is a real valued centered Gaussian process.
@article{ZNSL_2005_328_a9,
     author = {O. Perrin and M. Zani},
     title = {Large deviations for sample paths of {Gaussian} processes quadratic variations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {169--181},
     year = {2005},
     volume = {328},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a9/}
}
TY  - JOUR
AU  - O. Perrin
AU  - M. Zani
TI  - Large deviations for sample paths of Gaussian processes quadratic variations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 169
EP  - 181
VL  - 328
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a9/
LA  - en
ID  - ZNSL_2005_328_a9
ER  - 
%0 Journal Article
%A O. Perrin
%A M. Zani
%T Large deviations for sample paths of Gaussian processes quadratic variations
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 169-181
%V 328
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a9/
%G en
%F ZNSL_2005_328_a9
O. Perrin; M. Zani. Large deviations for sample paths of Gaussian processes quadratic variations. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 9, Tome 328 (2005), pp. 169-181. http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a9/

[1] J. Najim, “A Cramér type theorem for weighted random variables”, Electr. J. Prob., 7 (2002), 1–32 | MR

[2] E. G. Gladyshev, “A new limit theorem for processes with Gaussian increments”, Theory Prob. Appl., 6 (1961), 52–61 | DOI | Zbl

[3] G. Baxter, “A strong limit theorem for Gaussian processes”, Proc. Amer. Math. Soc., 7 (1956), 522–527 | DOI | MR | Zbl

[4] P. Lévy, “Le mouvement Brownien plan”, Amer. J. Math., 62 (1940), 487–550 | DOI | MR

[5] O. Perrin, “Quadratic variations for Gaussian processes and application to time deformation”, Stoch. Proc. Appl., 82 (1999), 293–305 | DOI | MR | Zbl

[6] A. A. Mogulskii, “Large deviations for trajectories of multi-dimensional random walks”, Theory Prob. Appl., 21 (1976), 300–315 | DOI | MR

[7] A. A. Mogulskii, “Large deviations for processes with independent increments”, Ann. Prob., 21 (1993), 202–215 | DOI | MR | Zbl

[8] F. Gamboa, E. Gassiat, Bayesian methods and maximum entropy for ill posed inverse problems, Preprint Orsay, 1995 | MR

[9] P. Cattiaux, F. Gamboa, “Large deviations and variational theorems for marginal problems”, Bernoulli, 5 (1999), 81–108 | DOI | MR | Zbl

[10] A. Dembo, O. Zeitouni, “Large deviations for subsampling from individual sequences”, Stat. and Prob. Lett., 27 (1996), 201–205 | DOI | MR | Zbl

[11] A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, second edition, Springer, 1998 | MR | Zbl

[12] F. Gamboa, E. Gassiat, “Bayesian methods for ill-posed problems”, Ann. Stat., 25 (1997), 328–350 | DOI | MR | Zbl

[13] F. Gamboa, A. Rouault, M. Zani, “A functional large deviations principle for quadratic forms of Gaussian stationary processes”, Stat. Prob. Lett., 43 (1999), 299–308 | DOI | MR | Zbl

[14] R. T. Rockafellar, “Integrals which are convex functionals, II”, Pac. J. Math., 39 (1971), 439–469 | MR | Zbl

[15] M. Zani, Grandes déviations pour des fonctionnelles issues de la statistique des processus, Thèse Orsay, 2000

[16] J. Istas, G. Lang, “Quadratic variations and estimation of the local Hölder index of a gaussian process”, Ann. Inst. H. Poincaré, 33 (1997), 407–437 | DOI | MR

[17] X. Guyon, J. Léon, “Convergence en loi des $H$-variations d'un processus gaussien stationnaire”, Ann. Inst. H. Poincaré, 25 (1989), 265–282 | MR | Zbl

[18] R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics, 169, Springer, New-York, 1996 | MR | Zbl

[19] A. de Acosta, “Large deviations for vector-valued Lévy processes”, Stoch. Proc. Appl., 51 (1994), 75–115 | DOI | MR | Zbl