Asymptotic optimality of the Bayes estimator on differentiable in quadratic mean models
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 9, Tome 328 (2005), pp. 114-146
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper deals with the study of the Bayes estimator's asymptotic properties on differentiable in quadratic mean (DQM) models in the case of independent and identically distributed observations. The investigation is led in order to define weak assumptions on the model under which this estimator is asymptotically efficient, regular and asymptotically of minimal risk. The results of the paper are applied to models based on a mixture distribution, the Cauchy with location and scale parameter's and the Weibull's.
@article{ZNSL_2005_328_a6,
     author = {H. Lh\'eritier and R. Iasnogorodski},
     title = {Asymptotic optimality of the {Bayes} estimator on differentiable in quadratic mean models},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {114--146},
     year = {2005},
     volume = {328},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a6/}
}
TY  - JOUR
AU  - H. Lhéritier
AU  - R. Iasnogorodski
TI  - Asymptotic optimality of the Bayes estimator on differentiable in quadratic mean models
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 114
EP  - 146
VL  - 328
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a6/
LA  - en
ID  - ZNSL_2005_328_a6
ER  - 
%0 Journal Article
%A H. Lhéritier
%A R. Iasnogorodski
%T Asymptotic optimality of the Bayes estimator on differentiable in quadratic mean models
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 114-146
%V 328
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a6/
%G en
%F ZNSL_2005_328_a6
H. Lhéritier; R. Iasnogorodski. Asymptotic optimality of the Bayes estimator on differentiable in quadratic mean models. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 9, Tome 328 (2005), pp. 114-146. http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a6/

[1] C. Dellacherie, P. A. Meyer, Probabilités et Potentiel, Ch. I–IV, Hermann, Paris, 1975 | MR | Zbl

[2] J. Hájek, “A characterization of limiting distributions of regular estimates”, Zeitschrift f{ü}r Wahrscheinlichkeitstheorie und Verwandte Gebiete, 14 (1970), 323–330 | DOI

[3] J. Hájek, “Local asymptotic minimax and admissibility in estimation”, Proceedings of the sixth Berkeley Symposium on Mathematical Statistics and Probability, 1, 1972, 175–194 | MR

[4] I. A. Ibragimov, R. Z. Hasminskii, Statistical Estimation. Asymptotic Theory, Springer-Verlag, New York, 1981 | MR

[5] L. Le Cam, “On some asymptotic properties of maximum likelihood estimates and related Bayes estimates”, University of California Publications in Statistics, 1 (1953), 277–328 | MR

[6] L. Le Cam, “Locally asymptotically normal families of distributions”, University of California Publications in Statistics, 3 (1960), 37–98 | MR | Zbl

[7] L. Le Cam, “Likelihood functions for large numbers of independent observations”, Research Papers in Statistics, Wiley, New York, 1966, 167–187 | MR

[8] L. Le Cam, Asymptotic Methods in Statistical Decision Theory, Springer-Verlag, New York, 1986 | MR

[9] L. Le Cam, G. L. Yang, Asymptotics in statistics: Some Basic Concepts, Springer-Verlag, New York, 1990 | MR

[10] H. Lhéritier, Comportement asymptotique de certains estimateurs sur des modèles paramétriques et sous des conditions nonstandard, University of Orléans, 2003