A Berry–Esseen type estimations for multi-sample $U$-statistics
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 9, Tome 328 (2005), pp. 69-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The rate of convergence in the central limit theorem for nondegenerate multi-sample $U$-statistics of series of independent samples of independent random variables is investigated under minimal sufficient moment conditions on canonical functions of Hoeffding representation.
@article{ZNSL_2005_328_a4,
     author = {L. V. Gadasina},
     title = {A {Berry{\textendash}Esseen} type estimations for multi-sample $U$-statistics},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {69--90},
     year = {2005},
     volume = {328},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a4/}
}
TY  - JOUR
AU  - L. V. Gadasina
TI  - A Berry–Esseen type estimations for multi-sample $U$-statistics
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 69
EP  - 90
VL  - 328
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a4/
LA  - ru
ID  - ZNSL_2005_328_a4
ER  - 
%0 Journal Article
%A L. V. Gadasina
%T A Berry–Esseen type estimations for multi-sample $U$-statistics
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 69-90
%V 328
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a4/
%G ru
%F ZNSL_2005_328_a4
L. V. Gadasina. A Berry–Esseen type estimations for multi-sample $U$-statistics. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 9, Tome 328 (2005), pp. 69-90. http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a4/

[1] Yu. V. Borovskikh, “O normalnoi approksimatsii $U$-statistik”, Teor. ver. i ee prim., 45:3 (2000), 469–488 | MR | Zbl

[2] Yu. V. Borovskikh, V. S. Korolyuk, Teoriya $U$-statistik, Naukova dumka, Kiev, 1994 | MR

[3] L. V. Gadasina, “Granitsa Berri–Esseena dlya $U$-statistik”, Zap. nauchn. semin. POMI, 298, 2003, 54–79 | MR | Zbl

[4] D. Fraser, Nonparametric methods in statistics, Wiley, New York, 1957 | MR | Zbl

[5] W. Hoeffding, “A class of statistics with asymptotically normal distribution”, Ann. Math. Statist., 19:3 (1948), 293–325 | DOI | MR | Zbl

[6] P. Sen, Sequential Nonparametrics: invariance principles and statistical inference, John Wiley and Sons, New York, 1981 | MR | Zbl

[7] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. II, Mir, M., 1971