Stochastic integral with respect to a semi-Markov process of diffusion type
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 9, Tome 328 (2005), pp. 251-276 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a multidimensional semi-Markov process of diffusion type. A stochastic integral with respect to the semi-Markov process is defined in terms of asymptotics related to the first exit time from a small neighborhood of the starting point of the process, and, in particular, in terms of its characteristic operator. This integral is equal to the sum of two other integrals: the first one is a curvilinear integral with respect to an additive functional defined in terms of the expected first exit time from a small neighborhood, and the second one is a stochastic integral with respect to a martingale of special kind. To prove the existence and to derive the properties of the integral, both the method of deducing sequences and that of inscribed ellipsoids are used. For Markov processes of diffusion type, the new definition of the stochastic integral is reduced to the standard one.
@article{ZNSL_2005_328_a15,
     author = {B. P. Harlamov},
     title = {Stochastic integral with respect to {a~semi-Markov} process of diffusion type},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {251--276},
     year = {2005},
     volume = {328},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a15/}
}
TY  - JOUR
AU  - B. P. Harlamov
TI  - Stochastic integral with respect to a semi-Markov process of diffusion type
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 251
EP  - 276
VL  - 328
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a15/
LA  - ru
ID  - ZNSL_2005_328_a15
ER  - 
%0 Journal Article
%A B. P. Harlamov
%T Stochastic integral with respect to a semi-Markov process of diffusion type
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 251-276
%V 328
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a15/
%G ru
%F ZNSL_2005_328_a15
B. P. Harlamov. Stochastic integral with respect to a semi-Markov process of diffusion type. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 9, Tome 328 (2005), pp. 251-276. http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a15/

[1] A. N. Borodin, P. Salminen, Handbook of Brownian Motion. Facts and Formulae, Birkhäuser Verlag, 1996 | MR | Zbl

[2] I. I. Gikhman, A. V. Skorokhod, Teoriya sluchainykh protsessov, t. II, Nauka, M., 1973 | MR

[3] I. I. Gikhman, A. V. Skorokhod, Teoriya sluchainykh protsessov, t. III, Nauka, M., 1975 | MR

[4] E. B. Dynkin, Markovskie protsessy, Fizmatgiz, M., 1963 | MR | Zbl

[5] R. Sh. Liptser, A. N. Shiryaev, Teoriya martingalov, Nauka, M., 1986 | MR | Zbl

[6] B. P. Kharlamov, Nepreryvnye polumarkovskie protsessy, Nauka, SPb., 2001 | MR

[7] B. P. Kharlamov, “Absolyutnaya nepreryvnost mer v klasse polumarkovskikh protsessov diffuzionnogo tipa”, Zap. nauch. semin. POMI RAN, 294, 2002, 216–244 | MR | Zbl

[8] B. P. Kharlamov, “Kharakteristicheskii operator diffuzionnogo protsessa”, Zap. nauch. semin. POMI RAN, 298, 2003, 226–251 | MR | Zbl