Robust regression models definition on base of generalised method of least modules
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 9, Tome 328 (2005), pp. 236-250 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper, a new method of steady construction of linear regression models, namely, the generalized method of the least modules is offered. The method is theoretically justifed. Experimental approbation on the test data is considered.
@article{ZNSL_2005_328_a14,
     author = {A. N. Tyrsin},
     title = {Robust regression models definition on base of generalised method of least modules},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {236--250},
     year = {2005},
     volume = {328},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a14/}
}
TY  - JOUR
AU  - A. N. Tyrsin
TI  - Robust regression models definition on base of generalised method of least modules
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 236
EP  - 250
VL  - 328
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a14/
LA  - ru
ID  - ZNSL_2005_328_a14
ER  - 
%0 Journal Article
%A A. N. Tyrsin
%T Robust regression models definition on base of generalised method of least modules
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 236-250
%V 328
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a14/
%G ru
%F ZNSL_2005_328_a14
A. N. Tyrsin. Robust regression models definition on base of generalised method of least modules. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 9, Tome 328 (2005), pp. 236-250. http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a14/

[1] P. Khyuber, Robastnost v statistike, Mir, M., 1984 | MR

[2] V. I. Mudrov, V. L. Kushko, Metody obrabotki izmerenii. Kvazipravdopodobnye otsenki, Radio i svyaz, M., 1983 | MR

[3] Y. Dodge (ed.), Statistical data analysis based on the $L_{1}$-norm and related methods. Papers of the 4th International Conference on Statistical Analysis on the $L_{1}$-Norm and Related Methods, Birkhauser, Basel, 2002 | MR

[4] M. Hubert, G. Pison, A. Struyf, S. Van Aelst, Theory and Applications of Recent Robust Methods, Statistics for Industry and Technology, Birkhauser, Basel, 2004 | MR

[5] T. Khettmansperger, Statisticheskie vyvody, osnovannye na rangakh, Finansy i statistika, M., 1987 | MR | Zbl

[6] M. V. Boldin, G. I. Simonova, Yu. N. Tyurin, Znakovyi statisticheskii analiz lineinykh modelei, Nauka, M., 1997

[7] A. I. Orlov, Ekonometrika, Ekzamen, M., 2002

[8] A. M. Tyrsin, “Robust Identification of Linear Models on Experimental Data”, The 4th Moscow International Conference On Operations Research, Proceedings, Moscow, 2004, 221–223

[9] E. M. Galeev, Optimizatsiya: teoriya, primery, zadachi, Editorial URSS, M., 2002

[10] Dzh. Forsait, M. Malkolm, K. Mouler, Mashinnye metody matematicheskikh vychislenii, Mir, M., 1980 | MR

[11] R. Dutter, P. Filzmoser, U. Gather, P. J. Rousseeuw, Developments in Robust Statistics, Physica-Verlag, Heidelberg-New York, 2003 | MR | Zbl

[12] F. Khampel, E. Ronchetti, P. Rausseu, V. Shtael, Robastnost v statistike. Podkhod na osnove funktsii vliyaniya, Mir, M., 1989 | MR | Zbl