Gaussian concentration in the Kantorovich metric of distributions of random variables and the quantile functions
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 9, Tome 328 (2005), pp. 230-235

Voir la notice de l'article provenant de la source Math-Net.Ru

A sketch of the proof of the following theorem. Let the unit ball of the kernel space $H_\gamma$ of a centered Gaussian measure $\gamma$ in the space $L^2$ is a subspace of the unit ball of this space. There exists a (“typical”) univariate distribution $\bar{\mathbf P}_\gamma$ such that the expectation with respect to $\gamma$ of the Kantorovich distance between the distribution of an element of $L^2$ chosen at random and this typical distribution is less than 0.8.
@article{ZNSL_2005_328_a13,
     author = {V. N. Sudakov},
     title = {Gaussian concentration in the {Kantorovich} metric of distributions of random variables and the quantile functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {230--235},
     publisher = {mathdoc},
     volume = {328},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a13/}
}
TY  - JOUR
AU  - V. N. Sudakov
TI  - Gaussian concentration in the Kantorovich metric of distributions of random variables and the quantile functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 230
EP  - 235
VL  - 328
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a13/
LA  - ru
ID  - ZNSL_2005_328_a13
ER  - 
%0 Journal Article
%A V. N. Sudakov
%T Gaussian concentration in the Kantorovich metric of distributions of random variables and the quantile functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 230-235
%V 328
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a13/
%G ru
%F ZNSL_2005_328_a13
V. N. Sudakov. Gaussian concentration in the Kantorovich metric of distributions of random variables and the quantile functions. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 9, Tome 328 (2005), pp. 230-235. http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a13/