Large Toeplitz operators and quadratic form generated by stationary Gaussian sequence
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 9, Tome 328 (2005), pp. 221-229

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma_n(f,g)=\sum\limits_{-n\le t,\,s\le n}\,g_{t-s}X_tX_s$ – be a Toeplitz quadratic form generated by a real valued function $g(u)=\sum\limits_{-\infty}^{\infty}\,g_ke^{iku}$ and stationary sequence $X_n$ with spectral density $f$. Many sufficient conditions of asymptotic normality of the normalized quadratic form $\Psi_n(f,g)$ have been proposed since 1958. A less restrictive one was given in the paper of L. Giraitis and D. Surgailis (1990). Using a linear operator approach, we suggest a new vision of the problem and propose a new sufficient condition on the couple of functions $(f,g)$ even more effective.
@article{ZNSL_2005_328_a12,
     author = {V. N. Solev and L. Gerville-Reache},
     title = {Large {Toeplitz} operators and quadratic form generated by stationary {Gaussian} sequence},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {221--229},
     publisher = {mathdoc},
     volume = {328},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a12/}
}
TY  - JOUR
AU  - V. N. Solev
AU  - L. Gerville-Reache
TI  - Large Toeplitz operators and quadratic form generated by stationary Gaussian sequence
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 221
EP  - 229
VL  - 328
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a12/
LA  - ru
ID  - ZNSL_2005_328_a12
ER  - 
%0 Journal Article
%A V. N. Solev
%A L. Gerville-Reache
%T Large Toeplitz operators and quadratic form generated by stationary Gaussian sequence
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 221-229
%V 328
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a12/
%G ru
%F ZNSL_2005_328_a12
V. N. Solev; L. Gerville-Reache. Large Toeplitz operators and quadratic form generated by stationary Gaussian sequence. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 9, Tome 328 (2005), pp. 221-229. http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a12/