Large Toeplitz operators and quadratic form generated by stationary Gaussian sequence
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 9, Tome 328 (2005), pp. 221-229
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\Gamma_n(f,g)=\sum\limits_{-n\le t,\,s\le n}\,g_{t-s}X_tX_s$ – be a Toeplitz quadratic form generated by a real valued function $g(u)=\sum\limits_{-\infty}^{\infty}\,g_ke^{iku}$ and stationary sequence $X_n$ with spectral density $f$. Many sufficient conditions of asymptotic normality of the normalized quadratic form $\Psi_n(f,g)$ have been  proposed  since 1958. A less restrictive one was given in the paper of L. Giraitis  and
D. Surgailis (1990). Using a linear operator approach, we suggest a new vision of the problem and propose a new sufficient condition on the couple of functions $(f,g)$ even more effective.
			
            
            
            
          
        
      @article{ZNSL_2005_328_a12,
     author = {V. N. Solev and L. Gerville-Reache},
     title = {Large {Toeplitz} operators and quadratic form generated by stationary {Gaussian} sequence},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {221--229},
     publisher = {mathdoc},
     volume = {328},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a12/}
}
                      
                      
                    TY - JOUR AU - V. N. Solev AU - L. Gerville-Reache TI - Large Toeplitz operators and quadratic form generated by stationary Gaussian sequence JO - Zapiski Nauchnykh Seminarov POMI PY - 2005 SP - 221 EP - 229 VL - 328 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a12/ LA - ru ID - ZNSL_2005_328_a12 ER -
V. N. Solev; L. Gerville-Reache. Large Toeplitz operators and quadratic form generated by stationary Gaussian sequence. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 9, Tome 328 (2005), pp. 221-229. http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a12/