Large Toeplitz operators and quadratic form generated by stationary Gaussian sequence
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 9, Tome 328 (2005), pp. 221-229 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\Gamma_n(f,g)=\sum\limits_{-n\le t,\,s\le n}\,g_{t-s}X_tX_s$ – be a Toeplitz quadratic form generated by a real valued function $g(u)=\sum\limits_{-\infty}^{\infty}\,g_ke^{iku}$ and stationary sequence $X_n$ with spectral density $f$. Many sufficient conditions of asymptotic normality of the normalized quadratic form $\Psi_n(f,g)$ have been proposed since 1958. A less restrictive one was given in the paper of L. Giraitis and D. Surgailis (1990). Using a linear operator approach, we suggest a new vision of the problem and propose a new sufficient condition on the couple of functions $(f,g)$ even more effective.
@article{ZNSL_2005_328_a12,
     author = {V. N. Solev and L. Gerville-Reache},
     title = {Large {Toeplitz} operators and quadratic form generated by stationary {Gaussian} sequence},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {221--229},
     year = {2005},
     volume = {328},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a12/}
}
TY  - JOUR
AU  - V. N. Solev
AU  - L. Gerville-Reache
TI  - Large Toeplitz operators and quadratic form generated by stationary Gaussian sequence
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 221
EP  - 229
VL  - 328
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a12/
LA  - ru
ID  - ZNSL_2005_328_a12
ER  - 
%0 Journal Article
%A V. N. Solev
%A L. Gerville-Reache
%T Large Toeplitz operators and quadratic form generated by stationary Gaussian sequence
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 221-229
%V 328
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a12/
%G ru
%F ZNSL_2005_328_a12
V. N. Solev; L. Gerville-Reache. Large Toeplitz operators and quadratic form generated by stationary Gaussian sequence. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 9, Tome 328 (2005), pp. 221-229. http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a12/

[1] F. Avram, On bilinear forms in Gaussian random variables and Toeplitz matrices, University of Calif. Press, 1958

[2] M. S. Ginovyan, “On Toeplits type quadratic forms in Gaussian stationary process”, Probab. Theory Related Fields, 100 (1994), 395–406 | DOI | MR | Zbl

[3] M. S. Ginovyan, A. A. Saakian, “On central limit theorem for Toeplitz quadratic forms in Gaussian stationary sequances”, Theory of Probability and its Applications, 2005, submitted | MR | Zbl

[4] L. Giraitis, D. Surgailis, “A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotical normality of Whittle's estimate”, Probab. Theory Related Fields, 86 (1990), 87–104 | DOI | MR | Zbl

[5] U. Grenander, Szegö, Toeplitz Form and Their Applications, University of Calif. Press, Berkeley and Los Angeles, 1958 | MR | Zbl

[6] R. Hunt, B. Muckenhoupt, R. Wheeden, “Weighted norm inequalities for the conjugate function and Hilbert transform”, Trans. Amer. Math. Soc., 176 (1973), 227–251 | DOI | MR | Zbl

[7] I. A. Ibragimov, “K otsenivaniyu spektralnoi plotnosti statsionarnogo gaussovskogo protsessa”, Teoriya veroyatnostei i ee prilozheniya, 8 (1963), 391–430 | MR | Zbl

[8] I. A. Ibragimov, Yu. A. Rozanov, Gaussovskie protsessy, Mir, Moskva, 1974

[9] M. Rosenblatt, “Asymptotic behavior of eigenvalues of Toeplitz form, transform”, J. Math. Mech., 11 (1962), 941–950 | MR