The multiple stochastic integrals and “nonpoissonian” transformations of the gamma measure
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 9, Tome 328 (2005), pp. 191-220 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the transformations of the configuration space and the corresponding transformations of the Poisson measure. For some class of Poisson measures we find conditions for the transformed measure (possible, nonpoissonian) to be absolutely continuous and get the expression for the corresponding Radon–Nikodym derivative. To solve this problem we use the Poisson analog of the multiple stochastic integral. As an example we consider the transformations of the so-called gamma measure.
@article{ZNSL_2005_328_a11,
     author = {N. V. Smorodina},
     title = {The multiple stochastic integrals and {\textquotedblleft}nonpoissonian{\textquotedblright} transformations of the gamma measure},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {191--220},
     year = {2005},
     volume = {328},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a11/}
}
TY  - JOUR
AU  - N. V. Smorodina
TI  - The multiple stochastic integrals and “nonpoissonian” transformations of the gamma measure
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 191
EP  - 220
VL  - 328
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a11/
LA  - ru
ID  - ZNSL_2005_328_a11
ER  - 
%0 Journal Article
%A N. V. Smorodina
%T The multiple stochastic integrals and “nonpoissonian” transformations of the gamma measure
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 191-220
%V 328
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a11/
%G ru
%F ZNSL_2005_328_a11
N. V. Smorodina. The multiple stochastic integrals and “nonpoissonian” transformations of the gamma measure. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 9, Tome 328 (2005), pp. 191-220. http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a11/

[1] J. Kerstan, K. Mattes, J. Mecke, Infinite divisible point processes, Akademie-Verlag, Berlin, 1978

[2] W. Linde, Infinitely divisible and stable measures on Banach spaces, Teubner, Leipzig, 1983 | MR | Zbl

[3] A. V. Skorokhod, “On the differentiability of measures which correspond to stochastic processes, I”, Theory Probab. Appl., 2 (1957), 629–649

[4] A. V. Skorokhod, Sluchainye protsessy s nezavisimymi prirascheniyami, Nauka, Moskva, 1986 | MR

[5] N. V. Smorodina, “Asimptoticheskoe razlozhenie dlya raspredeleniya gladkogo odnorodnogo funktsionala ot strogo ustoichivogo sluchainogo vektora”, Teoriya veroyatn. i ee primen., 41(1) (1996), 133–163 | MR | Zbl

[6] N. V. Smorodina, “Asimptoticheskoe razlozhenie dlya raspredeleniya gladkogo odnorodnogo funktsionala ot strogo ustoichivogo sluchainogo vektora, II”, Teoriya veroyatn. i ee primen., 44(2) (1999), 458–465 | MR | Zbl

[7] J. F. C. Kingman, Poisson Processes, Oxford, 1993 | MR | Zbl

[8] N. Privault, J. L. Wu, “Poisson stochastic integration in Hilbert spaces”, Ann. Math. Univ. Bl. Pascal, 6 (1999), 41–61 ; 154 (1998), 444–500 | MR | Zbl | MR

[9] D. Surgailis, “On multiple Poisson stocastic integrals and associated Markov semigroups”, Probab. Math. Statist., 3:2 (1984), 217–239 | MR

[10] S. Albeverio, N. Smorodina, The Poisson Analog of the Multiple Wiener-Ito Stochastic Integral, SFB 611 Preprint No 21, University of Bonn, 2002 | MR

[11] I. M. Gel'fand, M. I. Graev, A. M. Vershik, “Representations of the group of diffeomorphisms”, Russian Math. Surveys, 30 (1975), 3–50 | MR

[12] A. Vershik, N. Tsilevich, “Quasi-invariance of the gamma process and multiplicative properties of the Poisson-Dirichlet measures”, C. R. Acad. Sci. Paris Ser. I Math., 1999, no. 329, 163–168 | MR | Zbl