Small deviation probabilities for a class of distributions with a polinomial decreasing at zero
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 9, Tome 328 (2005), pp. 182-190 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the note small deviation probabilities of sum of i.i.d. positive random variables are studied, whose distribution function has a polinomial decrease at zero.
@article{ZNSL_2005_328_a10,
     author = {L. V. Rozovskii},
     title = {Small deviation probabilities for a~class of distributions with a~polinomial decreasing at zero},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {182--190},
     year = {2005},
     volume = {328},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a10/}
}
TY  - JOUR
AU  - L. V. Rozovskii
TI  - Small deviation probabilities for a class of distributions with a polinomial decreasing at zero
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 182
EP  - 190
VL  - 328
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a10/
LA  - ru
ID  - ZNSL_2005_328_a10
ER  - 
%0 Journal Article
%A L. V. Rozovskii
%T Small deviation probabilities for a class of distributions with a polinomial decreasing at zero
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 182-190
%V 328
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a10/
%G ru
%F ZNSL_2005_328_a10
L. V. Rozovskii. Small deviation probabilities for a class of distributions with a polinomial decreasing at zero. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 9, Tome 328 (2005), pp. 182-190. http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a10/

[1] T. Höglund, “A unified formulation of the central limit theorem for small and large deviations from the mean”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 49 (1979), 105–117 | DOI | MR | Zbl

[2] L. V. Rozovskii, “O sverkhbolshikh ukloneniyakh summy nezavisimykh sluchainykh velichin s obschim absolyutno nepreryvnym raspredeleniem, udovletvoryayuschim usloviyu Kramera”, Teoriya veroyatn. i ee primen., 47:1 (2002), 78–103

[3] A. V. Nagaev, S. S. Khodzhabagyan, “Predelnye teoremy, uchityvayuschie bolshie ukloneniya, dlya summ polozhitelnykh sluchainykh velichin”, Litov. matem. sb., 14:1 (1974), 149–163 | MR | Zbl

[4] M. A. Lifshits, “On the lower tail probabilities of some random series”, Ann. Probab., 25 (1997), 424–442 | DOI | MR | Zbl

[5] L. V. Rozovskii, “O veroyatnostyakh malykh uklonenii polozhitelnykh sluchainykh velichin”, Zap. nauchn. semin. POMI, 320, 2004, 150–159 | Zbl

[6] V. V. Petrov, Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972 | MR