Dimensions of random recursive sets
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 9, Tome 328 (2005), pp. 20-26

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a theorem that generalizes equality among packing, Hausdorff and upper and lower Mikowski dimensions for a general type of random recursive construction and apply it to the constructions with finite memory. Further we prove an upper bound on the packing dimension of certain random distribution funstions on $[0,1]$.
@article{ZNSL_2005_328_a1,
     author = {A. G. Berlinkov},
     title = {Dimensions of random recursive sets},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {20--26},
     publisher = {mathdoc},
     volume = {328},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a1/}
}
TY  - JOUR
AU  - A. G. Berlinkov
TI  - Dimensions of random recursive sets
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 20
EP  - 26
VL  - 328
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a1/
LA  - ru
ID  - ZNSL_2005_328_a1
ER  - 
%0 Journal Article
%A A. G. Berlinkov
%T Dimensions of random recursive sets
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 20-26
%V 328
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a1/
%G ru
%F ZNSL_2005_328_a1
A. G. Berlinkov. Dimensions of random recursive sets. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 9, Tome 328 (2005), pp. 20-26. http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a1/