@article{ZNSL_2005_328_a0,
author = {N. K. Bakirov and G. J. Szekely},
title = {Student's $t$-test for {Gaussian} scale mixtures},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--19},
year = {2005},
volume = {328},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a0/}
}
N. K. Bakirov; G. J. Szekely. Student's $t$-test for Gaussian scale mixtures. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 9, Tome 328 (2005), pp. 5-19. http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a0/
[1] M. S. Bartlett, “The effect of nonnormality on the $t$-distribution”, Proc. Camb. Phil. Soc., 31 (1935), 223–231 | DOI
[2] S. Basu, DasGupta, “Robustness of standard confidence intervals for location parameters under departure from normality”, Ann. Statist., 23 (1995), 1433–1442 | DOI | MR | Zbl
[3] Y. Benjamini, “Is the $t$-test really conservative when the parent distribution is long-tailed?”, J. Amer. Statist. Assoc., 78 (1983), 645–654 | DOI | MR | Zbl
[4] H. Bateman, A. Erdelyi, Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York, 1953 | MR
[5] N. Cressie, “Relaxing assumption in the one-sided $t$-test”, Australian J. Statist., 22 (1980), 143–153 | DOI | MR | Zbl
[6] B. Efron, “Student's $t$-test under symmetry conditions”, J. Amer. Statist. Assoc., 64 (1969), 1278–1302 | DOI | MR | Zbl
[7] B. Efron, R. A. Olshen, “How broad is the class of normal scale mixtures?”, Ann. Statist., 65 (1978), 1159–1164 | DOI | MR
[8] C. Eisenhart, “On the transition of “Student's” $z$ to “Student's” $t$”, Amer. Statist., 33 (1979), 6–10 | DOI | MR
[9] W. Feller, An introduction to probability theory and its applications, Vol. II, John Wiley Sons Inc., New York–London–Sydney, 1966 | MR | Zbl
[10] R. A. Fisher, “Applications of “Student's” distribution”, Metron, 5 (1925), 90–104 | Zbl
[11] T. Gneiting, “Normal scale mixtures and dual probability densities”, J. Statist. Comput. Simul., 59 (1997), 375–384 | DOI | Zbl
[12] H. Hotelling, “The behavior of some standard statistical tests under nonstandard conditions”, Proc. Fourth Berkeley Symp. Math. Statist. Probab., 1 (1961), 319–360 | MR
[13] D. Kelker, “Infinite divisibility and variance mixtures of the normal distribution”, Ann. Math. Statist., 42 (1971), 802–808 | DOI | MR | Zbl
[14] J. Landerman, “The distribution of “Student's” ratio for samples of two items drawn from non-normal universes”, Ann. Math. Statist., 10 (1939), 376–379 | DOI | MR
[15] A. F. S. Lee, J. Gurland, “One-sample t-test when sampling from a mixture of normal distributions”, Ann. Statist., 5 (1977), 803–807 | DOI | MR | Zbl
[16] A. V. Makshanov, O. V. Shalaevsky, “Some problems of asymptotic theory of distributions”, Zap. Nauchn. Semin. LOMI, 74, 1977, 118–138 | MR | Zbl
[17] E. S. Pearson, “The distribution of frequency constants in small samples from nonnormal symmetrical and skew populations”, Biometrika, 21 (1929), 259–286 | Zbl
[18] P. Prescott, “A simple alternative to Student's $t$”, Appl. Statist., 24 (1975), 210–217 | DOI | MR
[19] P. R. Rieder, “On the distribution of the ratio of mean to standard deviation in small samples from nonnormal universes”, Biometrika, 21 (1929), 124–143
[20] P. R. Rider, “On small samples from certain nonnormal universe”, Ann. Math. Statist., 2 (1931), 48–65 | DOI | Zbl
[21] P. R. Rietz, “On the distribution of the “Student” ratio for small samples from certain nonnormal populations”, Ann. Math. Statist., 10 (1939), 265–274 | DOI | MR
[22] “Student”, “The probable error of a mean”, Biometrika, 6 (1908), 1–25 | DOI
[23] G. J. Székely, Paradoxes in Probability Theory and Mathematical Statistics, Reidel, Dordrecht, 1986 | MR | Zbl
[24] J. W. Tukey, D. H. McLaughin, “Less vulnerable confidence and significance procedures for location based on a single sample: Trimming/Winsorization,I”, Sankhya, Ser. A, 25 (1963), 331–352 | MR | Zbl