On the Littlewood--Paley theorem for arbitrary intervals
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 33, Tome 327 (2005), pp. 98-114

Voir la notice de l'article provenant de la source Math-Net.Ru

We extend the results of Rubio de Francia [1] and Bourgain [2] by showing that for arbitrary mutually nonintersecting intervals $\Delta_k\subset\mathbb Z_+$, arbitrary $p\in(0,2]$, and arbitrary trigonometric polynomials $f_k$ with $\mathrm{supp}\,\widehat f_k\subset\Delta_k$, we have $$ \biggl\|\sum_k f_k\biggr\|_{H^p(\mathbb T)}\le a_p\biggl\|\biggl(\sum_k|f_k|^2\biggr)^{1/2}\biggr\|_{L^p(\mathbb T)}. $$ The method is a development of that by Rubio de Francia.
@article{ZNSL_2005_327_a6,
     author = {S. V. Kislyakov and D. V. Parilov},
     title = {On the {Littlewood--Paley} theorem for arbitrary intervals},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {98--114},
     publisher = {mathdoc},
     volume = {327},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a6/}
}
TY  - JOUR
AU  - S. V. Kislyakov
AU  - D. V. Parilov
TI  - On the Littlewood--Paley theorem for arbitrary intervals
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 98
EP  - 114
VL  - 327
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a6/
LA  - ru
ID  - ZNSL_2005_327_a6
ER  - 
%0 Journal Article
%A S. V. Kislyakov
%A D. V. Parilov
%T On the Littlewood--Paley theorem for arbitrary intervals
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 98-114
%V 327
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a6/
%G ru
%F ZNSL_2005_327_a6
S. V. Kislyakov; D. V. Parilov. On the Littlewood--Paley theorem for arbitrary intervals. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 33, Tome 327 (2005), pp. 98-114. http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a6/