@article{ZNSL_2005_327_a6,
author = {S. V. Kislyakov and D. V. Parilov},
title = {On the {Littlewood{\textendash}Paley} theorem for arbitrary intervals},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {98--114},
year = {2005},
volume = {327},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a6/}
}
S. V. Kislyakov; D. V. Parilov. On the Littlewood–Paley theorem for arbitrary intervals. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 33, Tome 327 (2005), pp. 98-114. http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a6/
[1] J. L. Rubio de Francia, “A Littlewood–Paley inequality for arbitrary intervals”, Rev. Mat. Iberoamer., 1 (1985), 1–13 | MR
[2] J. Bourgain, “On square functions on the trigonometric system”, Bull. Soc. Math. Belg., 37:1 (1985), 20–26 | MR | Zbl
[3] J. Garcia-Cuerva, J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland, 1985 | MR | Zbl
[4] S. V. Kislyakov, “Fourier coefficients of continuous functions and a class of multipliers”, Ann. Inst. Fourier, 38:2 (1988), 147–184 | MR
[5] Kh. Tribel, Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, Moskva, 1980 | MR
[6] S. V. Kislyakov, Q. Xu, “Interpolation of weighted and vector-valued Hardy spaces”, Trans. Amer. Math. Soc., 343:1 (1994), 1–34 | DOI | MR | Zbl
[7] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, Nauka, Moskva, 1984 | MR | Zbl
[8] J. Bourgain, “Vector-valued singular integrals and the $H^1$-$\text{\rm BMO}$ duality”, Probability Theory and Harmonic Analysis, Pure and Appl. Math., 98, eds. J. A. Chao and W. A. Woyczyński, M. Dekker, New York and Basel, 1983 | MR
[9] A. Zigmund, Trigonometricheskie ryady, T. 1, Mir, Moskva, 1965 | MR