On the Littlewood--Paley theorem for arbitrary intervals
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 33, Tome 327 (2005), pp. 98-114
Voir la notice de l'article provenant de la source Math-Net.Ru
We extend the results of Rubio de Francia [1] and Bourgain [2] by showing that for arbitrary mutually nonintersecting intervals $\Delta_k\subset\mathbb Z_+$, arbitrary $p\in(0,2]$, and arbitrary trigonometric polynomials $f_k$ with $\mathrm{supp}\,\widehat f_k\subset\Delta_k$, we have
$$
\biggl\|\sum_k f_k\biggr\|_{H^p(\mathbb T)}\le a_p\biggl\|\biggl(\sum_k|f_k|^2\biggr)^{1/2}\biggr\|_{L^p(\mathbb T)}.
$$
The method is a development of that by Rubio de Francia.
@article{ZNSL_2005_327_a6,
author = {S. V. Kislyakov and D. V. Parilov},
title = {On the {Littlewood--Paley} theorem for arbitrary intervals},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {98--114},
publisher = {mathdoc},
volume = {327},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a6/}
}
S. V. Kislyakov; D. V. Parilov. On the Littlewood--Paley theorem for arbitrary intervals. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 33, Tome 327 (2005), pp. 98-114. http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a6/