On the Littlewood–Paley theorem for arbitrary intervals
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 33, Tome 327 (2005), pp. 98-114 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We extend the results of Rubio de Francia [1] and Bourgain [2] by showing that for arbitrary mutually nonintersecting intervals $\Delta_k\subset\mathbb Z_+$, arbitrary $p\in(0,2]$, and arbitrary trigonometric polynomials $f_k$ with $\mathrm{supp}\,\widehat f_k\subset\Delta_k$, we have $$ \biggl\|\sum_k f_k\biggr\|_{H^p(\mathbb T)}\le a_p\biggl\|\biggl(\sum_k|f_k|^2\biggr)^{1/2}\biggr\|_{L^p(\mathbb T)}. $$ The method is a development of that by Rubio de Francia.
@article{ZNSL_2005_327_a6,
     author = {S. V. Kislyakov and D. V. Parilov},
     title = {On the {Littlewood{\textendash}Paley} theorem for arbitrary intervals},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {98--114},
     year = {2005},
     volume = {327},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a6/}
}
TY  - JOUR
AU  - S. V. Kislyakov
AU  - D. V. Parilov
TI  - On the Littlewood–Paley theorem for arbitrary intervals
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 98
EP  - 114
VL  - 327
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a6/
LA  - ru
ID  - ZNSL_2005_327_a6
ER  - 
%0 Journal Article
%A S. V. Kislyakov
%A D. V. Parilov
%T On the Littlewood–Paley theorem for arbitrary intervals
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 98-114
%V 327
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a6/
%G ru
%F ZNSL_2005_327_a6
S. V. Kislyakov; D. V. Parilov. On the Littlewood–Paley theorem for arbitrary intervals. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 33, Tome 327 (2005), pp. 98-114. http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a6/

[1] J. L. Rubio de Francia, “A Littlewood–Paley inequality for arbitrary intervals”, Rev. Mat. Iberoamer., 1 (1985), 1–13 | MR

[2] J. Bourgain, “On square functions on the trigonometric system”, Bull. Soc. Math. Belg., 37:1 (1985), 20–26 | MR | Zbl

[3] J. Garcia-Cuerva, J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland, 1985 | MR | Zbl

[4] S. V. Kislyakov, “Fourier coefficients of continuous functions and a class of multipliers”, Ann. Inst. Fourier, 38:2 (1988), 147–184 | MR

[5] Kh. Tribel, Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, Moskva, 1980 | MR

[6] S. V. Kislyakov, Q. Xu, “Interpolation of weighted and vector-valued Hardy spaces”, Trans. Amer. Math. Soc., 343:1 (1994), 1–34 | DOI | MR | Zbl

[7] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, Nauka, Moskva, 1984 | MR | Zbl

[8] J. Bourgain, “Vector-valued singular integrals and the $H^1$-$\text{\rm BMO}$ duality”, Probability Theory and Harmonic Analysis, Pure and Appl. Math., 98, eds. J. A. Chao and W. A. Woyczyński, M. Dekker, New York and Basel, 1983 | MR

[9] A. Zigmund, Trigonometricheskie ryady, T. 1, Mir, Moskva, 1965 | MR