Isomorphic type of the space of smooth functions determined by a~finite family of differential operators
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 33, Tome 327 (2005), pp. 78-97

Voir la notice de l'article provenant de la source Math-Net.Ru

On the torus $\mathbb T^n$ with $n\ge 2$, the space mentioned in the title is not isomorphic to a complemented subspace of $C(K)$ if the finite family in question consists of homogeneous differential operators of one and the same order with constant coefficients and at least two among them are linearly independent.
@article{ZNSL_2005_327_a5,
     author = {S. V. Kislyakov and D. V. Maksimov},
     title = {Isomorphic type of the space of smooth functions determined by a~finite family of differential operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {78--97},
     publisher = {mathdoc},
     volume = {327},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a5/}
}
TY  - JOUR
AU  - S. V. Kislyakov
AU  - D. V. Maksimov
TI  - Isomorphic type of the space of smooth functions determined by a~finite family of differential operators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 78
EP  - 97
VL  - 327
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a5/
LA  - ru
ID  - ZNSL_2005_327_a5
ER  - 
%0 Journal Article
%A S. V. Kislyakov
%A D. V. Maksimov
%T Isomorphic type of the space of smooth functions determined by a~finite family of differential operators
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 78-97
%V 327
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a5/
%G ru
%F ZNSL_2005_327_a5
S. V. Kislyakov; D. V. Maksimov. Isomorphic type of the space of smooth functions determined by a~finite family of differential operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 33, Tome 327 (2005), pp. 78-97. http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a5/