Isomorphic type of the space of smooth functions determined by a~finite family of differential operators
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 33, Tome 327 (2005), pp. 78-97
Voir la notice de l'article provenant de la source Math-Net.Ru
On the torus $\mathbb T^n$ with $n\ge 2$, the space mentioned in the title is not isomorphic to a complemented subspace of $C(K)$ if the finite family in question consists of homogeneous differential operators of one and the same order with constant coefficients and at least two among them are linearly
independent.
@article{ZNSL_2005_327_a5,
author = {S. V. Kislyakov and D. V. Maksimov},
title = {Isomorphic type of the space of smooth functions determined by a~finite family of differential operators},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {78--97},
publisher = {mathdoc},
volume = {327},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a5/}
}
TY - JOUR AU - S. V. Kislyakov AU - D. V. Maksimov TI - Isomorphic type of the space of smooth functions determined by a~finite family of differential operators JO - Zapiski Nauchnykh Seminarov POMI PY - 2005 SP - 78 EP - 97 VL - 327 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a5/ LA - ru ID - ZNSL_2005_327_a5 ER -
%0 Journal Article %A S. V. Kislyakov %A D. V. Maksimov %T Isomorphic type of the space of smooth functions determined by a~finite family of differential operators %J Zapiski Nauchnykh Seminarov POMI %D 2005 %P 78-97 %V 327 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a5/ %G ru %F ZNSL_2005_327_a5
S. V. Kislyakov; D. V. Maksimov. Isomorphic type of the space of smooth functions determined by a~finite family of differential operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 33, Tome 327 (2005), pp. 78-97. http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a5/