Exactness of approximation of a~subharmonic function by the logarithm of the modulus of an analytic function in the Chebyshev metric
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 33, Tome 327 (2005), pp. 55-73
Voir la notice de l'article provenant de la source Math-Net.Ru
It is known that a subharmonic function $u(z)$ of finite order $\rho$ can be approximated by the logarithm of the modulus of an entire function $f(z)$ at the point $z$ up to $C\log|z|$ outside a very small exceptional set. We prove that if a constant $C$ decreases, then, beginning with the value $C=\rho/4$, the exceptional set enlarges substantially. This improves a result by Yulmukhametov. We also prove similar results for subharmonic
functions of infinite order and functions subharmonic in the disk.
The main result of the article is the following.
Theorem 1. Suppose a number $\rho$ is positive, and an entire function $f(z)$ satisfies the condition
$$
||z|^\rho-\log|f(z)||\le C\log|z|, \qquad z\notin E,
$$
where $E\subset\bigcup_j\{z:|z-z_j|$, $r_j|z_j|^{1-\rho/2-2C+\varepsilon}$, and $\varepsilon>0$. Then
$$
\sum_{R\le|z_j|\le 2R}r_j\ge R^{1+\rho/2-2C-3\varepsilon}, \qquad R>R(\varepsilon).
$$
@article{ZNSL_2005_327_a3,
author = {M. A. Hirnyk},
title = {Exactness of approximation of a~subharmonic function by the logarithm of the modulus of an analytic function in the {Chebyshev} metric},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {55--73},
publisher = {mathdoc},
volume = {327},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a3/}
}
TY - JOUR AU - M. A. Hirnyk TI - Exactness of approximation of a~subharmonic function by the logarithm of the modulus of an analytic function in the Chebyshev metric JO - Zapiski Nauchnykh Seminarov POMI PY - 2005 SP - 55 EP - 73 VL - 327 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a3/ LA - ru ID - ZNSL_2005_327_a3 ER -
%0 Journal Article %A M. A. Hirnyk %T Exactness of approximation of a~subharmonic function by the logarithm of the modulus of an analytic function in the Chebyshev metric %J Zapiski Nauchnykh Seminarov POMI %D 2005 %P 55-73 %V 327 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a3/ %G ru %F ZNSL_2005_327_a3
M. A. Hirnyk. Exactness of approximation of a~subharmonic function by the logarithm of the modulus of an analytic function in the Chebyshev metric. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 33, Tome 327 (2005), pp. 55-73. http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a3/