@article{ZNSL_2005_327_a2,
author = {A. Vagharshakyan},
title = {Invariant transformations for the {Sturm{\textendash}Liouville} operator},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {25--54},
year = {2005},
volume = {327},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a2/}
}
A. Vagharshakyan. Invariant transformations for the Sturm–Liouville operator. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 33, Tome 327 (2005), pp. 25-54. http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a2/
[1] M. G. Krein, I. S. Kats, “Kriterii diskretnosti spektra singulyarnoi struny”, Izv. VUZóv, 1958, no. 2(3), 136–153 | MR
[2] M. G. Krein, “Reshenie obratnoi zadachi Shturma–Liuvillya”, Doklady AN SSSR, 76:1 (1951), 21–24 | MR | Zbl
[3] E. L. Isaacson, E. Trubowitz, “The inverse Sturm–Liouville problem, 1”, Comm. Pure Appl. Mat., 26 (1983), 767–783 | DOI | MR
[4] J. Poschel, E. Trubowitz, Inverse Spectral Theory, Pure Appl. Math., 130, Academic Press, 1987 | MR
[5] A. Vagharshakyan, On the spectrum of the Sturm–Liouville operator, Preprint TRITA-MAT-2000-09 (2000) KTH Stockholm
[6] V. Maz'a, T. Shaposhnikova, Multipliers in spaces of differentiable functions, St.Peterburg Univ., 1986 | MR
[7] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Kiev, 1977 | MR | Zbl
[8] B. Sz.-Nagy, “Vibrations d'une corde nonhomogene”, Bull. Soc. Math. France, 75 (1947), 193–208 | MR
[9] Ph. Hartman, Ordinary differential equations, John Wiley Sons, New-York, 1964 | MR | Zbl
[10] Mu-Fa Chen, “Ergodic convergence rates of Markov processes – eigenvalues inequalities and ergodic theory”, ICM, 3 (2002), 41–52 | MR
[11] N. Danford, J. Schwartz, Linear operators, V. 2, New York, London, 1963 | MR
[12] A. Vagharshakyan, “A group of invariant transforms for Sturm–Liouville operators”, Algebra, Geometry, Appl., 2 (2002), 38–47 | MR | Zbl
[13] H. P. W. Gottlieb, “Isospectral strings”, Inverse Problems, 18 (2002), 971–978 | DOI | MR | Zbl