On the cyclic elements of the shift operator in a weighted anisotropic space of holomorphic function in the polydisc
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 33, Tome 327 (2005), pp. 226-234 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\varphi(r)=(\varphi_1(r_1),\dots,\varphi_n(r_n))$ be a vector-valued function on $\mathbf R^n_+$. A necessary and sufficiently condition is obtained for every $f\in H^\infty(\mathbf D^n)$, $f(z)\ne 0$, $z\in \mathbf D^n$ to be cyclic in the corresponding $L^p(\varphi)$ weighted space, where $\mathbf D^n$ is unit polydisc in $\mathbf C^n$.
@article{ZNSL_2005_327_a12,
     author = {F. A. Shamoyan},
     title = {On the cyclic elements of the shift operator in a~weighted anisotropic space of holomorphic function in the polydisc},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {226--234},
     year = {2005},
     volume = {327},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a12/}
}
TY  - JOUR
AU  - F. A. Shamoyan
TI  - On the cyclic elements of the shift operator in a weighted anisotropic space of holomorphic function in the polydisc
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 226
EP  - 234
VL  - 327
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a12/
LA  - ru
ID  - ZNSL_2005_327_a12
ER  - 
%0 Journal Article
%A F. A. Shamoyan
%T On the cyclic elements of the shift operator in a weighted anisotropic space of holomorphic function in the polydisc
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 226-234
%V 327
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a12/
%G ru
%F ZNSL_2005_327_a12
F. A. Shamoyan. On the cyclic elements of the shift operator in a weighted anisotropic space of holomorphic function in the polydisc. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 33, Tome 327 (2005), pp. 226-234. http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a12/

[1] M. V. Keldysh, “Sur l'aproximation en moyenne par polynômes, des fonctions d'une variable complexe”, Mat.sb., 16 (18) (1945), 1–20 | MR | Zbl

[2] S. N. Mergelyan, “Vesovye priblizheniya mnogochlenami”, Uspekhi mat. nauk, 11:5 (1956), 107–152 | MR

[3] H. S. Shapiro, “Weakly invertible elements in cartain function spaces and generaters in $l^1$”, Mich. Math. Journal, 11:2 (1964), 161–169 | DOI | MR

[4] N. K. Nikolskii, Izbrannye zadachi vesovoi approksimatsii i spektralnogo analiza, Trudy MIAN SSSR, 120, 1974 | MR

[5] F. A. Shamoyan, “Opisanie zamknutykh idealov i nekotorye voprosy faktorizatsii v algebrakh rastuschikh funktsii v kruge”, Izv. AN Arm.SSR, Seriya Matem., 5 (1970), 419–433 | Zbl

[6] F. A. Shamoyan, “O slaboi obratimosti v vesovykh prostranstvakh analiticheskikh funktsii”, Izv. RAN, Seriya Matem., 60:5 (1996), 190–212 | MR

[7] N. K. Nikolskii, Lektsii ob operatore sdviga, Nauka, M., 1980 | MR

[8] N. K. Nikolski, Operators, Functions and Systems, v. 1, Amer. Math. Soc., 2002

[9] A. Beurling, “A critical topology in harmonic analysis on semigroups”, Acta Math., 112:3–4 (1964), 215–228 | DOI | MR | Zbl

[10] F. A. Shamoyan, “O slaboi obratimosti v vesovykh anizotropnykh prostranstvakh golomorfnykh v polikruge funktsii”, Uspekhi mat. nauk, 5:2 (2000), 152–154 | MR

[11] F. A. Shamoyan, “Slabo obratimye elementy v vesovykh anizotropnykh prostranstvakh golomorfnykh v polikruge funktsii”, Matem. sb., 193:6 (2002), 141–160 | MR

[12] U. Rudin, Teoriya funktsii v polikruge, Mir, M., 1974 | MR | Zbl

[13] S. Mandelbroit, Primykayuschie ryady. Regulyarizatsiya posledovatelnostei. Primeneniya, Izd. inostr. lit., M., 1955 | MR