Riesz potentials associated with the composite power function on the space of rectangular matrices
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 33, Tome 327 (2005), pp. 207-225

Voir la notice de l'article provenant de la source Math-Net.Ru

On the space of real rectangular matrices, Riesz potentials depending on a multidimensional complex parameter are studied. These potentials are in relationship with the composite power function of a matrix argument. For the potentials indicated, analogs of classical equalities are established. In particular, the semigroup property for the Riesz potentials with multidimensional complex parameter is proved under less restrictive limitations on the parameters of a rectangular matrix than the corresponding semigroup property for the Riesz potentials of one complex parameter.
@article{ZNSL_2005_327_a11,
     author = {S. P. Khekalo},
     title = {Riesz potentials associated with the composite power function on the space of rectangular matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {207--225},
     publisher = {mathdoc},
     volume = {327},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a11/}
}
TY  - JOUR
AU  - S. P. Khekalo
TI  - Riesz potentials associated with the composite power function on the space of rectangular matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 207
EP  - 225
VL  - 327
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a11/
LA  - ru
ID  - ZNSL_2005_327_a11
ER  - 
%0 Journal Article
%A S. P. Khekalo
%T Riesz potentials associated with the composite power function on the space of rectangular matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 207-225
%V 327
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a11/
%G ru
%F ZNSL_2005_327_a11
S. P. Khekalo. Riesz potentials associated with the composite power function on the space of rectangular matrices. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 33, Tome 327 (2005), pp. 207-225. http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a11/