Riesz potentials associated with the composite power function on the space of rectangular matrices
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 33, Tome 327 (2005), pp. 207-225 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

On the space of real rectangular matrices, Riesz potentials depending on a multidimensional complex parameter are studied. These potentials are in relationship with the composite power function of a matrix argument. For the potentials indicated, analogs of classical equalities are established. In particular, the semigroup property for the Riesz potentials with multidimensional complex parameter is proved under less restrictive limitations on the parameters of a rectangular matrix than the corresponding semigroup property for the Riesz potentials of one complex parameter.
@article{ZNSL_2005_327_a11,
     author = {S. P. Khekalo},
     title = {Riesz potentials associated with the composite power function on the space of rectangular matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {207--225},
     year = {2005},
     volume = {327},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a11/}
}
TY  - JOUR
AU  - S. P. Khekalo
TI  - Riesz potentials associated with the composite power function on the space of rectangular matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 207
EP  - 225
VL  - 327
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a11/
LA  - ru
ID  - ZNSL_2005_327_a11
ER  - 
%0 Journal Article
%A S. P. Khekalo
%T Riesz potentials associated with the composite power function on the space of rectangular matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 207-225
%V 327
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a11/
%G ru
%F ZNSL_2005_327_a11
S. P. Khekalo. Riesz potentials associated with the composite power function on the space of rectangular matrices. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 33, Tome 327 (2005), pp. 207-225. http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a11/

[1] J. Faraut, A. Koranyi, Analysis on symmetric cones, Clarendon Press, Oxford, 1994 | MR | Zbl

[2] S. P. Khekalo, “Potentsialy Rissa v prostranstve pryamougolnykh matrits i izogyuigensova deformatsiya operatora Keli–Laplasa”, DAN, 376:2 (2001), 168–170 | MR | Zbl

[3] E. Ournycheva, B. Rubin, An analogue of the Fuglede formula in integral geometry on matrix space, arXiv: /math/0401127 | MR

[4] B. Rubin, Zeta integrals and integral geometry in the spase of rectangular matrices, Preprint, The Hebrew Univ. of Jerusalem, Feb., 2004 | MR

[5] S. P. Khekalo, “Differentsialnyi operator Keli–Laplasa na prostranstve pryamougolnykh matrits”, Izvestiya AN, ser. mat., 69:1 (2005), 195–224 | MR | Zbl

[6] S. P. Khekalo, Dzeta-funktsiya Iguzy, assotsiirovannaya so slozhnoi stepennoi funktsiei na prostranstve pryamougolnykh matrits, Preprint POMI No 10, 2004 | MR | Zbl

[7] E. Ournycheva, B. Rubin, The Composite Cosine Transform on the Stiefel Manifold and Generalized Zeta Integrals, Preprint, The Hebrew Univ. of Jerusalem, 2005 | MR

[8] S. G. Gindikin, “Analiz v odnorodnykh oblastyakh”, UMN, 19:4(118) (1964), 3–92 | MR | Zbl

[9] S. Khelgason, Preobrazovanie Radona, Mir, M., 1983 | MR | Zbl

[10] C. Herz, “Bessel function of matrix argument”, Ann. of Math., 61:3 (1955), 474–523 | DOI | MR | Zbl

[11] S. P. Khekalo, Silno odnorodnye differentsialnye operatory na prostranstve pryamougolnykh matrits, Preprint POMI RAN No 11, 2004, 1–13 | MR | Zbl

[12] I. M. Gelfand, G. E. Shilov, Prostranstva osnovnykh i obobschennykh funktsii, Vyp. 2, Fizmatgiz, M., 1958 | MR

[13] G. S. Samko, Hypersingular integrals and their applications, Analytical Methods and Special Functions, 5, Taylor and Francis, Ltd., London, 2002 | MR | Zbl