Integration of differential forms on manifolds with locally finite variations
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 33, Tome 327 (2005), pp. 168-206 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is well known that one can integrate any compactly supported continuous differential $n$-form over $n$-dimensional $C^1$-manifolds in $\mathbb R^m $ ($m\ge n$). For $n=1$ the integral may be defined over any locally rectifiable curve. Another generalization is the theory of currents (linear functionals on the space of compactly supported $C^\infty$-differential forms). The theme of the article is integration of measurable differential $n$-forms over $n$-dimensional $C^0$-manifolds in $\mathbb R^m$ with locally finite $n$-dimensional variations (a generalization of locally rectifiable curves to dimension $n>1$). The main result states that any such manifold generates an $n$-dimensional current in $\mathbb R^m$ (i.e., any compactly supported $C^\infty$ $n$-form may be integrated over a manifold with the properties mentioned above).
@article{ZNSL_2005_327_a10,
     author = {A. V. Potepun},
     title = {Integration of differential forms on manifolds with locally finite variations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {168--206},
     year = {2005},
     volume = {327},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a10/}
}
TY  - JOUR
AU  - A. V. Potepun
TI  - Integration of differential forms on manifolds with locally finite variations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 168
EP  - 206
VL  - 327
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a10/
LA  - ru
ID  - ZNSL_2005_327_a10
ER  - 
%0 Journal Article
%A A. V. Potepun
%T Integration of differential forms on manifolds with locally finite variations
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 168-206
%V 327
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a10/
%G ru
%F ZNSL_2005_327_a10
A. V. Potepun. Integration of differential forms on manifolds with locally finite variations. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 33, Tome 327 (2005), pp. 168-206. http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a10/

[1] G. Grauert, I. Lib, V. Fisher, Differentsialnoe i integralnoe ischislenie, M., 1971

[2] G. Federer, Geometricheskaya teoriya mery, M., 1987

[3] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, M., 1957 | MR

[4] L. Shvarts, Analiz, t. II, M., 1972

[5] A. Dold, Lektsii po algebraicheskoi topologii, M., 1976 | MR

[6] B. Z. Vulikh, Kratkii kurs teorii funktsii veschestvennoi peremennoi, M., 1973

[7] N. Dinculeanu, Vector measures, Berlin, 1966 | MR

[8] N. Burbaki, Algebra. Algebraicheskie struktury. Lineinaya i polilineinaya algebra, M., 1962