Interior compact subspaces and differentiation in model subspaces
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 33, Tome 327 (2005), pp. 17-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We discuss the relationship between a theorem of P. Koosis on interior compact subspaces in $L^2(0,\infty)$ and recent results due to K. M. Dyakonov on differentiation in the model subspaces of the Hardy class $H^2$ in the upper half-plane.
@article{ZNSL_2005_327_a1,
     author = {A. D. Baranov},
     title = {Interior compact subspaces and differentiation in model subspaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {17--24},
     year = {2005},
     volume = {327},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a1/}
}
TY  - JOUR
AU  - A. D. Baranov
TI  - Interior compact subspaces and differentiation in model subspaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 17
EP  - 24
VL  - 327
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a1/
LA  - ru
ID  - ZNSL_2005_327_a1
ER  - 
%0 Journal Article
%A A. D. Baranov
%T Interior compact subspaces and differentiation in model subspaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 17-24
%V 327
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a1/
%G ru
%F ZNSL_2005_327_a1
A. D. Baranov. Interior compact subspaces and differentiation in model subspaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 33, Tome 327 (2005), pp. 17-24. http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a1/

[1] A. D. Baranov, “Vesovye neravenstva Bernshteina i teoremy vlozheniya dlya koinvariantnykh podprostranstv operatora sdviga”, Algebra i Analiz, 15 (2003), 138–168 | MR | Zbl

[2] A. D. Baranov, “Bernstein-type inequalities for shift-coinvariant subspaces and their applications to Carleson embeddings”, J. Funct. Anal., 223 (2005), 116–146 | DOI | MR | Zbl

[3] J. A. Cima, W. T. Ross, The backward shift on the Hardy space, Mathematical Surveys and Monographs, 79, AMS, Providence, RI, 2000 | MR | Zbl

[4] K. M. Dyakonov, “Tselye funktsii eksponentsialnogo tipa i modelnye podprostranstva v $H^p$”, Zap. nauchn. semin. LOMI, 190, 1991, 81–100 | MR

[5] K. M. Dyakonov, “Differentiation in star-invariant subspaces. I: Boundedness and compactness”, J. Funct. Anal., 192 (2002), 364–386 | DOI | MR | Zbl

[6] K. M. Dyakonov, “Differentiation in star-invariant subspaces. II: Schatten class criteria”, J. Funct. Anal., 192 (2002), 387–409 | DOI | MR | Zbl

[7] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981 | MR | Zbl

[8] P. Koosis, “Interior compact spaces of functions on a half-line”, Comm. Pure Appl. Math., 10 (1957), 583–615 | DOI | MR | Zbl

[9] P. D. Lax, “Remarks on the preceding paper”, Comm. Pure Appl. Math., 10 (1957), 617–622 | DOI | MR | Zbl

[10] N. K. Nikolskii, Lektsii ob operatore sdviga, Nauka, M., 1980 | MR