A version of the Grothendieck theorem for subspaces of analytic functions in lattices
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 33, Tome 327 (2005), pp. 5-16
Cet article a éte moissonné depuis la source Math-Net.Ru
A version of Grothendieck's inequality says that any bounded linear operator acting from a Banach lattice $X$ to a Banach lattice $Y$, also acts from $X(\ell^2)$ to $Y(\ell^2)$. A similar statement is proved for Hardy-type subspaces in lattices of measurable functions. Namely, let $X$ be a Banach lattice of measurable functions on the circle, and let an operator $T$ act from the corresponding subspace of analytic functions $X_A$ to a Banach lattice $Y$ or, if $Y$ is also a lattice of measurable functions on the circle, to the quotient space $Y/Y_A$. Under certain mild conditions on the lattices involved, it is proved that $T$ induces an operator acting from $X_A(\ell^2)$ to $Y(\ell^2)$ or to $Y/Y_A(\ell^2)$, respectively.
@article{ZNSL_2005_327_a0,
author = {D. S. Anisimov},
title = {A version of the {Grothendieck} theorem for subspaces of analytic functions in lattices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--16},
year = {2005},
volume = {327},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a0/}
}
D. S. Anisimov. A version of the Grothendieck theorem for subspaces of analytic functions in lattices. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 33, Tome 327 (2005), pp. 5-16. http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a0/
[1] N. J. Kalton, “Complex interpolation of Hardy–type subspaces”, Math. Nachr., 171 (1995), 227–258 | DOI | MR | Zbl
[2] Joram Lindenstrauss and Lior Tzafriri, Classical Banach Spaces II. Function Spaces, Spinger-Verlag, 1979 | MR
[3] P. Wojtaszczyk, Banach Spaces For Analysts, Cambridge University Press, 1991 | MR | Zbl
[4] S. V. Kislyakov, “O VMO-regulyarnykh reshetkakh izmerimykh funktsii”, Algebra i analiz, 14:2 (2002), 117–135 | MR | Zbl
[5] L. V. Akilov, G. P. Kantorovich, Funktsionalnyi analiz, Nauka, M., 1977 | MR
[6] S. V. Kislyakov, “Absolyutno summiruyuschie operatory na disk–algebre”, Algebra i analiz, 3:4 (1991), 1–77 | MR
[7] A. Pich, Operatornye idealy, Mir, M., 1982 | MR