A version of the Grothendieck theorem for subspaces of analytic functions in lattices
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 33, Tome 327 (2005), pp. 5-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A version of Grothendieck's inequality says that any bounded linear operator acting from a Banach lattice $X$ to a Banach lattice $Y$, also acts from $X(\ell^2)$ to $Y(\ell^2)$. A similar statement is proved for Hardy-type subspaces in lattices of measurable functions. Namely, let $X$ be a Banach lattice of measurable functions on the circle, and let an operator $T$ act from the corresponding subspace of analytic functions $X_A$ to a Banach lattice $Y$ or, if $Y$ is also a lattice of measurable functions on the circle, to the quotient space $Y/Y_A$. Under certain mild conditions on the lattices involved, it is proved that $T$ induces an operator acting from $X_A(\ell^2)$ to $Y(\ell^2)$ or to $Y/Y_A(\ell^2)$, respectively.
@article{ZNSL_2005_327_a0,
     author = {D. S. Anisimov},
     title = {A version of the {Grothendieck} theorem for subspaces of analytic functions in lattices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--16},
     year = {2005},
     volume = {327},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a0/}
}
TY  - JOUR
AU  - D. S. Anisimov
TI  - A version of the Grothendieck theorem for subspaces of analytic functions in lattices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 5
EP  - 16
VL  - 327
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a0/
LA  - ru
ID  - ZNSL_2005_327_a0
ER  - 
%0 Journal Article
%A D. S. Anisimov
%T A version of the Grothendieck theorem for subspaces of analytic functions in lattices
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 5-16
%V 327
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a0/
%G ru
%F ZNSL_2005_327_a0
D. S. Anisimov. A version of the Grothendieck theorem for subspaces of analytic functions in lattices. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 33, Tome 327 (2005), pp. 5-16. http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a0/

[1] N. J. Kalton, “Complex interpolation of Hardy–type subspaces”, Math. Nachr., 171 (1995), 227–258 | DOI | MR | Zbl

[2] Joram Lindenstrauss and Lior Tzafriri, Classical Banach Spaces II. Function Spaces, Spinger-Verlag, 1979 | MR

[3] P. Wojtaszczyk, Banach Spaces For Analysts, Cambridge University Press, 1991 | MR | Zbl

[4] S. V. Kislyakov, “O VMO-regulyarnykh reshetkakh izmerimykh funktsii”, Algebra i analiz, 14:2 (2002), 117–135 | MR | Zbl

[5] L. V. Akilov, G. P. Kantorovich, Funktsionalnyi analiz, Nauka, M., 1977 | MR

[6] S. V. Kislyakov, “Absolyutno summiruyuschie operatory na disk–algebre”, Algebra i analiz, 3:4 (1991), 1–77 | MR

[7] A. Pich, Operatornye idealy, Mir, M., 1982 | MR