$*$-algebras of unbounded operators affiliated with a von Neumann algebra
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIII, Tome 326 (2005), pp. 183-197 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper, the $*$-algebras of measurable operators, locally measurable operators, and $\tau$-measurable operators associated with von Neumann algebra $M$ are considered. Conditions under which some of these algebras coincide are given.
@article{ZNSL_2005_326_a9,
     author = {M. A. Muratov and V. I. Chilin},
     title = {$*$-algebras of unbounded operators affiliated with a~von {Neumann} algebra},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {183--197},
     year = {2005},
     volume = {326},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a9/}
}
TY  - JOUR
AU  - M. A. Muratov
AU  - V. I. Chilin
TI  - $*$-algebras of unbounded operators affiliated with a von Neumann algebra
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 183
EP  - 197
VL  - 326
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a9/
LA  - ru
ID  - ZNSL_2005_326_a9
ER  - 
%0 Journal Article
%A M. A. Muratov
%A V. I. Chilin
%T $*$-algebras of unbounded operators affiliated with a von Neumann algebra
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 183-197
%V 326
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a9/
%G ru
%F ZNSL_2005_326_a9
M. A. Muratov; V. I. Chilin. $*$-algebras of unbounded operators affiliated with a von Neumann algebra. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIII, Tome 326 (2005), pp. 183-197. http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a9/

[1] I. E. Segal, “A noncommutative extension of abstract integration”, Ann. Math., 57 (1953), 401–457 | DOI | MR | Zbl

[2] E. Nelson, “Notes on non-commutative integration”, J. Funct. Anal., 15 (1974), 103–116 | DOI | MR | Zbl

[3] F. J. Yeadon, “Non-commutative $L^P$-spaces”, Math. Proc. Camb. Phil. Soc., 77 (1975), 91–102 | DOI | MR | Zbl

[4] T. Fack, H. Kosaki, “Generalized $s$-numbers of $\tau$-mesaurable operators”, Pacific J. Math., 123 (1986), 269–300 | MR | Zbl

[5] P. G. Dixon, “Unbounded operator algebras”, Proc. London Math. Soc., 23 (1971), 53–59 | DOI | MR

[6] S. Sankaran, “The $*$-algebra of unbounded operators”, J. London Math. Soc., 34 (1959), 337–344 | DOI | MR | Zbl

[7] F. J. Yeadon, “Convergence of measurable operators”, Proc. Camb. Phil. Soc., 74 (1973), 257–268 | DOI | MR | Zbl

[8] B. S. Zakirov, V. I. Chilin, “Abstraktnaya kharakterizatsiya $EW^*$-algebr”, Funkts. anal. i ego prilozh., 25:1 (1991), 76–78 | MR | Zbl

[9] S. Stratila, L. Zsido, Lectures on von Neumann algebras, Abacus Press, 1979 | MR | Zbl

[10] M. Takesaki, Theory of operator algebras, I, Springer, New York, 1979 | MR

[11] K. Saito, “On the algebra of measurable operators for a general $AW^*$-algebra, II”, Tohoku. Math. J., 23 (1971), 525–534 | DOI | MR