$*$-algebras of unbounded operators affiliated with a~von Neumann algebra
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIII, Tome 326 (2005), pp. 183-197
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper, the $*$-algebras of measurable operators, locally measurable operators, and $\tau$-measurable operators associated with von Neumann algebra $M$ are considered. Conditions under which some of these algebras coincide are given.
@article{ZNSL_2005_326_a9,
author = {M. A. Muratov and V. I. Chilin},
title = {$*$-algebras of unbounded operators affiliated with a~von {Neumann} algebra},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {183--197},
publisher = {mathdoc},
volume = {326},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a9/}
}
TY - JOUR AU - M. A. Muratov AU - V. I. Chilin TI - $*$-algebras of unbounded operators affiliated with a~von Neumann algebra JO - Zapiski Nauchnykh Seminarov POMI PY - 2005 SP - 183 EP - 197 VL - 326 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a9/ LA - ru ID - ZNSL_2005_326_a9 ER -
M. A. Muratov; V. I. Chilin. $*$-algebras of unbounded operators affiliated with a~von Neumann algebra. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIII, Tome 326 (2005), pp. 183-197. http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a9/