Unitary representations and modular actions
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIII, Tome 326 (2005), pp. 97-144 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We call a measure-preserving action of a countable discrete group on a standard probability space tempered if the associated Koopman representation restricted to the orthogonal complement to the constant functions is weakly contained in the regular representation. Extending a result of Hjorth, we show that every tempered action is antimodular, i.e., in a precise sense “orthogonal” to any Borel action of a countable group by automorphisms on a countable rooted tree. We also study tempered actions of countable groups by automorphisms on compact metrizable groups, where it turns out that this notion has several ergodic theoretic reformulations and fits naturally in a hierarchy of strong ergodicity properties strictly between ergodicity and strong mixing.
@article{ZNSL_2005_326_a7,
     author = {A. S. Kechris},
     title = {Unitary representations and modular actions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {97--144},
     year = {2005},
     volume = {326},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a7/}
}
TY  - JOUR
AU  - A. S. Kechris
TI  - Unitary representations and modular actions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 97
EP  - 144
VL  - 326
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a7/
LA  - en
ID  - ZNSL_2005_326_a7
ER  - 
%0 Journal Article
%A A. S. Kechris
%T Unitary representations and modular actions
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 97-144
%V 326
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a7/
%G en
%F ZNSL_2005_326_a7
A. S. Kechris. Unitary representations and modular actions. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIII, Tome 326 (2005), pp. 97-144. http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a7/

[1] B. Bekka, P. de la Harpe, A. Valette, Kazhdan's property (T), Preprint, 2002

[2] B. Bekka, M. Mayer, Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces, London Math. Soc. Lect. Notes Series, 269, Cambridge Univ. Press, 2000 | MR | Zbl

[3] V. Bergelson, J. Rosenblatt, “Mixing actions of groups, III”, Ill. J. Math., 32 (1988), 65–80 | MR | Zbl

[4] M. Burger, P. de la Harpe, “Constructing irreducible representations of discrete groups”, Proc. Ind. Acad. Sci. Math. Sci., 107:3 (1997), 223–235 | DOI | MR | Zbl

[5] P.-A. Cherix, M. Cowling, P. Jolissaint, P. Julg, A. Valette, “Groups with the Haagerup property”, Progress Math., 197 (2001), Birkhäuser | MR

[6] M. Cowling, U. Haagerup, R. Howe, “Almost $L^2$ matrix coefficients”, J. Reine Angew. Math., 387 (1988), 97–110 | MR | Zbl

[7] J. Dixmier, $C^*$-Algebras, North Holland, 1977 | MR

[8] G. Folland, A Course in Abstract Harmonic Analysis, CRC Press, 1995 | MR | Zbl

[9] H. Furstenberg, B. Weiss, “The finite multipliers of infinite ergodic transformations. The structure of attractors in dynamical systems”, Lect. Notes Math., 668, 1978, 127–132 | MR | Zbl

[10] U. Haagerup, “An example of a nonnuclear $C^*$-algebra which has the metric approximation property”, Invent. Math., 50(3) (1978–1979), 279–293 | DOI | MR

[11] E. Hewitt, K. A. Ross, Abstract Harmonic Analysis, I, Springer-Verlag, 1979 | MR

[12] G. Hjorth, “A converse to Dye's theorem”, Trans. Amer. Math. Soc., 357:8 (2002), 3083–3103 | DOI | MR

[13] G. Hjorth, A. S. Kechris, Rigidity theorems for actions of product groups and countable Borel equivalence relations, Mem. Amer. Math. Soc., 177, no. 833, 2002 | MR

[14] S. Jackson, A. S. Kechris, A. Louveau, “Countable Borel equivalence relation”, J. Math. Logic, 2:1 (2002), 1–80 | DOI | MR | Zbl

[15] V. Jones, K. Schmidt, “Asymptotically invariant sequences and approximate finiteness”, Amer. J. Math., 109 (1987), 91–114 | DOI | MR | Zbl

[16] B. Kitchens, K. Schmidt, “Automorphisms of compact groups”, Erg. Th. and Dyn. Syst., 9 (1989), 691–735 | MR | Zbl

[17] A. Knapp, Representation Theory of Semisimple Groups, Princeton Univ. Press, 1986 | MR | Zbl

[18] A. Lubotzky, Discrete Groups, Expanding Graphs and Invariant Measures, Birkhäuser, 1994 | MR | Zbl

[19] R. C. Lyndon, P. E. Schupp, Combinatorial Group Theory, Springer, 1977 | MR | Zbl

[20] K. Schmidt, “Asymptotic properties of unitary representations and mixing”, Proc. London Math. Soc., 48(3) (1925), 445–460 | DOI | MR

[21] K. Schmidt, Dynamical Systems of Algebraic Origin, Progress Math., 128, Birkhäuser, 1995 | MR | Zbl

[22] K. Schmidt, P. Walters, “Mildly mixing actions of locally compact groups”, Proc. London Math. Soc., 45 (1982), 506–518 | DOI | MR | Zbl

[23] S. Thomas, “Superrigidity and countable Borel equivalence relations”, Ann. Pure Appl. Logic, 120 (2003), 237–262 | DOI | MR | Zbl

[24] S. Wagon, The Banach–Tarski Paradox, Cambridge Univ. Press, 1979 | MR

[25] R. Zimmer, Ergodic Theory and Semisimple Groups, Birkhäuser, 1984 | MR | Zbl