@article{ZNSL_2005_326_a7,
author = {A. S. Kechris},
title = {Unitary representations and modular actions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {97--144},
year = {2005},
volume = {326},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a7/}
}
A. S. Kechris. Unitary representations and modular actions. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIII, Tome 326 (2005), pp. 97-144. http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a7/
[1] B. Bekka, P. de la Harpe, A. Valette, Kazhdan's property (T), Preprint, 2002
[2] B. Bekka, M. Mayer, Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces, London Math. Soc. Lect. Notes Series, 269, Cambridge Univ. Press, 2000 | MR | Zbl
[3] V. Bergelson, J. Rosenblatt, “Mixing actions of groups, III”, Ill. J. Math., 32 (1988), 65–80 | MR | Zbl
[4] M. Burger, P. de la Harpe, “Constructing irreducible representations of discrete groups”, Proc. Ind. Acad. Sci. Math. Sci., 107:3 (1997), 223–235 | DOI | MR | Zbl
[5] P.-A. Cherix, M. Cowling, P. Jolissaint, P. Julg, A. Valette, “Groups with the Haagerup property”, Progress Math., 197 (2001), Birkhäuser | MR
[6] M. Cowling, U. Haagerup, R. Howe, “Almost $L^2$ matrix coefficients”, J. Reine Angew. Math., 387 (1988), 97–110 | MR | Zbl
[7] J. Dixmier, $C^*$-Algebras, North Holland, 1977 | MR
[8] G. Folland, A Course in Abstract Harmonic Analysis, CRC Press, 1995 | MR | Zbl
[9] H. Furstenberg, B. Weiss, “The finite multipliers of infinite ergodic transformations. The structure of attractors in dynamical systems”, Lect. Notes Math., 668, 1978, 127–132 | MR | Zbl
[10] U. Haagerup, “An example of a nonnuclear $C^*$-algebra which has the metric approximation property”, Invent. Math., 50(3) (1978–1979), 279–293 | DOI | MR
[11] E. Hewitt, K. A. Ross, Abstract Harmonic Analysis, I, Springer-Verlag, 1979 | MR
[12] G. Hjorth, “A converse to Dye's theorem”, Trans. Amer. Math. Soc., 357:8 (2002), 3083–3103 | DOI | MR
[13] G. Hjorth, A. S. Kechris, Rigidity theorems for actions of product groups and countable Borel equivalence relations, Mem. Amer. Math. Soc., 177, no. 833, 2002 | MR
[14] S. Jackson, A. S. Kechris, A. Louveau, “Countable Borel equivalence relation”, J. Math. Logic, 2:1 (2002), 1–80 | DOI | MR | Zbl
[15] V. Jones, K. Schmidt, “Asymptotically invariant sequences and approximate finiteness”, Amer. J. Math., 109 (1987), 91–114 | DOI | MR | Zbl
[16] B. Kitchens, K. Schmidt, “Automorphisms of compact groups”, Erg. Th. and Dyn. Syst., 9 (1989), 691–735 | MR | Zbl
[17] A. Knapp, Representation Theory of Semisimple Groups, Princeton Univ. Press, 1986 | MR | Zbl
[18] A. Lubotzky, Discrete Groups, Expanding Graphs and Invariant Measures, Birkhäuser, 1994 | MR | Zbl
[19] R. C. Lyndon, P. E. Schupp, Combinatorial Group Theory, Springer, 1977 | MR | Zbl
[20] K. Schmidt, “Asymptotic properties of unitary representations and mixing”, Proc. London Math. Soc., 48(3) (1925), 445–460 | DOI | MR
[21] K. Schmidt, Dynamical Systems of Algebraic Origin, Progress Math., 128, Birkhäuser, 1995 | MR | Zbl
[22] K. Schmidt, P. Walters, “Mildly mixing actions of locally compact groups”, Proc. London Math. Soc., 45 (1982), 506–518 | DOI | MR | Zbl
[23] S. Thomas, “Superrigidity and countable Borel equivalence relations”, Ann. Pure Appl. Logic, 120 (2003), 237–262 | DOI | MR | Zbl
[24] S. Wagon, The Banach–Tarski Paradox, Cambridge Univ. Press, 1979 | MR
[25] R. Zimmer, Ergodic Theory and Semisimple Groups, Birkhäuser, 1984 | MR | Zbl