@article{ZNSL_2005_326_a6,
author = {R. I. Grigorchuk and V. V. Nekrashevych},
title = {Amenable actions of nonamenable groups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {85--96},
year = {2005},
volume = {326},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a6/}
}
R. I. Grigorchuk; V. V. Nekrashevych. Amenable actions of nonamenable groups. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIII, Tome 326 (2005), pp. 85-96. http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a6/
[1] L. Bartholdi, R.I. Grigorchuk, Z. Šuniḱ, “Branch groups”, Handbook of algebra, Vol. 3, North-Holland, Amsterdam, 2003, 989–1112 | MR
[2] L. Bartholdi, V. Kaimanovich, V. Nekrashevych, B. Virág, Amenability of automata groups, Preprint, 2004
[3] L. Bartholdi, B. Virág, “Amenability via random walks”, Duke Math Journal (to appear)
[4] T. Ceccherini-Silberstein, R. I. Grigorchuk, P. {de la} Harpe, Algebra. Topol. Differ. Uravn. i ikh Prilozh., Dedicated to Academician Lev Semenovich Pontryagin on the occasion of his 90th birthday, Trudy Mat. Inst. Steklov., 224, 1999 | MR | Zbl
[5] A. Erschler, “On isoperimetric profiles of finitely generated groups”, Geom. Dedicata, 100 (2003), 157–171 | DOI | MR | Zbl
[6] A. Erschler, “Boundary behaviour for groups of subexponential growth”, Annals of Mathematics, 160 (2004), 1183–1210 | DOI | MR
[7] A. Erschler, Piecewise automatic groups, Preprint, 2005 | MR
[8] Y. Glasner, N. Monod, Invariant means and generic actions, Preprint, 2005
[9] R. I. Grigorchuk, V. V. Nekrashevich, V. I. Sushchanskii, “Automata, dynamical systems and groups”, Proceedings of the Steklov Institute of Mathematics, 231, 2000, 128–203 | MR | Zbl
[10] F. P. Greenleaf, Invariant means on topological groups, Van Nostrand Reinhold, New York, 1969 | MR | Zbl
[11] R. I. Grigorchuk, “Symmetrical random walks on discrete groups”, Multicomponent random systems, eds. R. L. Dobrushin, Ya. G. Sinay, Nauka, Moscow, 1978, 132–152
[12] R. I. Grigorchuk, “Degrees of growth of finitely generated groups and the theory of invariant means”, Math. USSR Izv., 25:2 (1985), 259–300 | DOI | MR | Zbl
[13] R. I. Grigorchuk, “An example of a finitely presented amenable group that does not belong to the class $EG$”, Mat. Sb., 189:1 (1998), 79–100 | MR | Zbl
[14] R. I. Grigorchuk, “Just infinite branch groups”, New horizons in pro-$p$ groups, Progress in Mathematics, 184, eds. Aner Shalev, Marcus P. F. {du Sautoy}, Dan Segal, Birkhäuser Verlag, Basel, etc., 2000, 121–179 | MR | Zbl
[15] P. {de la} Harpe, Topics in geometric group theory, University of Chicago Press, 2000 | MR
[16] V. Kaimanovich, “Amenability, hyperfiniteness, and isoperimetric inequalities”, C. R. Acad. Sci. Paris. Sér. I Math., 325 (1997), 999–1004 | MR | Zbl
[17] V. Kaimanovich, A. Vershik, “Random walks on discrete groups: boundary and entropy”, Ann. Prob., 11 (1983), 457–490 | DOI | MR | Zbl
[18] A. Lubotzky, “Cayley graphs: eigenvalues, expanders and random walks”, Surveys in combinatorics, 1995 (Stirling), London Math. Soc. Lecture Note Ser., 218, Cambridge Univ. Press, Cambridge, 1995, 155–189 | MR | Zbl
[19] N. Monod, S. Popa, “On co-amenability for groups and von Neumann algebras”, C. R. Math. Acad. Sci. Soc. R. Can., 25:3 (2003), 82–87 | MR | Zbl
[20] V. Nekrashevych, Self-similar groups, Mathematical Surveys and Monographs, AMS (to appear) | MR | Zbl
[21] V. Nekrashevych, “Cuntz-Pimsner algebras of group actions”, Journal of Operator Theory, 52:2 (2004), 223–249 | MR
[22] S. N. Sidki, Regular trees and their automorphisms, Monografias de Matematica, 56, IMPA, Rio de Janeiro, 1998 | MR | Zbl
[23] E. K. van Douwen, “Measures invariant under action of $F_2$”, Topology and its Applications, 34 (1990), 53–68 | DOI | MR | Zbl
[24] A. Vershik, “Countable groups close to finite groups”, Appendix to the Russian translation of the book F. P. Greenleaf, Invariant means on topological groups and their applications, 1973, 112–135
[25] J. von Neumann, “Zur allgemeinen Theorie des Masses”, Fund. Math., 13 (1929), 73–116, 333 ; Collected Works, I, 599–643 | Zbl