Amenable actions of nonamenable groups
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIII, Tome 326 (2005), pp. 85-96 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We give two ways of constructing amenable (in the sense of Greenleaf) actions of nonamenable groups. In the first part of the paper we construct a class of faithful transitive amenable actions of the free group using Schreier graphs. In the second part we show that every finitely generated residually finite group can be embedded into a bigger residually finite group, which acts level-transitively on a locally finite rooted tree, so that the induced action on the boundary of the tree is amenable on every orbit.
@article{ZNSL_2005_326_a6,
     author = {R. I. Grigorchuk and V. V. Nekrashevych},
     title = {Amenable actions of nonamenable groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {85--96},
     year = {2005},
     volume = {326},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a6/}
}
TY  - JOUR
AU  - R. I. Grigorchuk
AU  - V. V. Nekrashevych
TI  - Amenable actions of nonamenable groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 85
EP  - 96
VL  - 326
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a6/
LA  - en
ID  - ZNSL_2005_326_a6
ER  - 
%0 Journal Article
%A R. I. Grigorchuk
%A V. V. Nekrashevych
%T Amenable actions of nonamenable groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 85-96
%V 326
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a6/
%G en
%F ZNSL_2005_326_a6
R. I. Grigorchuk; V. V. Nekrashevych. Amenable actions of nonamenable groups. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIII, Tome 326 (2005), pp. 85-96. http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a6/

[1] L. Bartholdi, R.I. Grigorchuk, Z. Šuniḱ, “Branch groups”, Handbook of algebra, Vol. 3, North-Holland, Amsterdam, 2003, 989–1112 | MR

[2] L. Bartholdi, V. Kaimanovich, V. Nekrashevych, B. Virág, Amenability of automata groups, Preprint, 2004

[3] L. Bartholdi, B. Virág, “Amenability via random walks”, Duke Math Journal (to appear)

[4] T. Ceccherini-Silberstein, R. I. Grigorchuk, P. {de la} Harpe, Algebra. Topol. Differ. Uravn. i ikh Prilozh., Dedicated to Academician Lev Semenovich Pontryagin on the occasion of his 90th birthday, Trudy Mat. Inst. Steklov., 224, 1999 | MR | Zbl

[5] A. Erschler, “On isoperimetric profiles of finitely generated groups”, Geom. Dedicata, 100 (2003), 157–171 | DOI | MR | Zbl

[6] A. Erschler, “Boundary behaviour for groups of subexponential growth”, Annals of Mathematics, 160 (2004), 1183–1210 | DOI | MR

[7] A. Erschler, Piecewise automatic groups, Preprint, 2005 | MR

[8] Y. Glasner, N. Monod, Invariant means and generic actions, Preprint, 2005

[9] R. I. Grigorchuk, V. V. Nekrashevich, V. I. Sushchanskii, “Automata, dynamical systems and groups”, Proceedings of the Steklov Institute of Mathematics, 231, 2000, 128–203 | MR | Zbl

[10] F. P. Greenleaf, Invariant means on topological groups, Van Nostrand Reinhold, New York, 1969 | MR | Zbl

[11] R. I. Grigorchuk, “Symmetrical random walks on discrete groups”, Multicomponent random systems, eds. R. L. Dobrushin, Ya. G. Sinay, Nauka, Moscow, 1978, 132–152

[12] R. I. Grigorchuk, “Degrees of growth of finitely generated groups and the theory of invariant means”, Math. USSR Izv., 25:2 (1985), 259–300 | DOI | MR | Zbl

[13] R. I. Grigorchuk, “An example of a finitely presented amenable group that does not belong to the class $EG$”, Mat. Sb., 189:1 (1998), 79–100 | MR | Zbl

[14] R. I. Grigorchuk, “Just infinite branch groups”, New horizons in pro-$p$ groups, Progress in Mathematics, 184, eds. Aner Shalev, Marcus P. F. {du Sautoy}, Dan Segal, Birkhäuser Verlag, Basel, etc., 2000, 121–179 | MR | Zbl

[15] P. {de la} Harpe, Topics in geometric group theory, University of Chicago Press, 2000 | MR

[16] V. Kaimanovich, “Amenability, hyperfiniteness, and isoperimetric inequalities”, C. R. Acad. Sci. Paris. Sér. I Math., 325 (1997), 999–1004 | MR | Zbl

[17] V. Kaimanovich, A. Vershik, “Random walks on discrete groups: boundary and entropy”, Ann. Prob., 11 (1983), 457–490 | DOI | MR | Zbl

[18] A. Lubotzky, “Cayley graphs: eigenvalues, expanders and random walks”, Surveys in combinatorics, 1995 (Stirling), London Math. Soc. Lecture Note Ser., 218, Cambridge Univ. Press, Cambridge, 1995, 155–189 | MR | Zbl

[19] N. Monod, S. Popa, “On co-amenability for groups and von Neumann algebras”, C. R. Math. Acad. Sci. Soc. R. Can., 25:3 (2003), 82–87 | MR | Zbl

[20] V. Nekrashevych, Self-similar groups, Mathematical Surveys and Monographs, AMS (to appear) | MR | Zbl

[21] V. Nekrashevych, “Cuntz-Pimsner algebras of group actions”, Journal of Operator Theory, 52:2 (2004), 223–249 | MR

[22] S. N. Sidki, Regular trees and their automorphisms, Monografias de Matematica, 56, IMPA, Rio de Janeiro, 1998 | MR | Zbl

[23] E. K. van Douwen, “Measures invariant under action of $F_2$”, Topology and its Applications, 34 (1990), 53–68 | DOI | MR | Zbl

[24] A. Vershik, “Countable groups close to finite groups”, Appendix to the Russian translation of the book F. P. Greenleaf, Invariant means on topological groups and their applications, 1973, 112–135

[25] J. von Neumann, “Zur allgemeinen Theorie des Masses”, Fund. Math., 13 (1929), 73–116, 333 ; Collected Works, I, 599–643 | Zbl