@article{ZNSL_2005_326_a5,
author = {A. V. Gnedin and J. Pitman},
title = {Self-similar and {Markov} composition structures},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {59--84},
year = {2005},
volume = {326},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a5/}
}
A. V. Gnedin; J. Pitman. Self-similar and Markov composition structures. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIII, Tome 326 (2005), pp. 59-84. http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a5/
[1] R. Arratia, “On the central role of scale invariant Poisson processes on $(0,\infty)$”, Microsurveys in discrete probability (Princeton, NJ, 1997), Amer. Math. Soc., Providence, RI, 21–41 | MR | Zbl
[2] R. Arratia, A. D. Barbour, S. Tavaré, Logarithmic combinatorial structures: a probabilistic approach, EMS Monographs in Mathematics, European Mathematical Society, Zürich, 2003 | MR | Zbl
[3] A. D. Barbour, A. V. Gnedin, Regenerative compositions in the case of slow variation, arXiv: /math.PR/0505171 | MR
[4] J. Bunge, C. Goldie, “Record sequences and their applications”, Handbook of Statistics, Elsevier. Handb. Stat., 19, eds. D. N. Shanbhag, C. R. Rao, Elsevier, Amsterdam, 2001, 277–308 | MR | Zbl
[5] P. Donnelly, P. Joyce, “Consistent ordered sampling distributions: characterization and convergence”, Adv. Appl. Prob., 23 (1991), 229–258 | DOI | MR | Zbl
[6] A. V. Gnedin, “The representation of composition structures”, Ann. Probab., 25 (1997), 1437–1450 | DOI | MR | Zbl
[7] A. V. Gnedin, “The Bernoulli sieve”, Bernoulli, 10 (2004), 79–96 | DOI | MR | Zbl
[8] A. V. Gnedin, “Three sampling formulas”, Combin. Probab. Comput., 13 (2004), 185–193 | DOI | MR | Zbl
[9] A. V. Gnedin, J. Pitman, “Regenerative composition structures”, Ann. Probab., 33 (2005), 445–479 | DOI | MR | Zbl
[10] A. V. Gnedin, J. Pitman, “Regenerative partition structures”, Elec. J. Comb., 11:2 (2004–2005), R12 | MR
[11] A. V. Gnedin, J. Pitman, M. Yor, “Asymptotic laws for composition structures derived from transformed subordinators”, Ann. Probab., to appear | MR
[12] A. V. Gnedin, J. Pitman, M. Yor, Asymptotic laws for regenerative compositions: gamma subordinators and the like, arXiv: /math.PR/0405440 | MR
[13] S. Nacu, Increments of random partitions, arXiv: /math.PR/0310091 | MR
[14] J. Pitman, “Partition structures derived from Brownian motion and stable subordinators”, Bernoulli, 3 (1997), 79–96 | DOI | MR | Zbl
[15] J. Pitman, Combinatorial stochastic processes, Ecole d'Ete de Probabilites de Saint-Flour XXXII, 2002, Lecture Notes in Mathematics, 1875, Springer, Berlin, 2006 | MR | Zbl
[16] J. Pitman, M. Yor, “The two-parameter Poisson–Dirichlet distribution derived from transformed subordinator”, Ann. Probab., 25 (1996), 855–900 | MR
[17] J. Pitman, M. Yor, “Random discrete distributions derived from self-similar random sets”, Electron. J. Probab., 1 (1996), 1–28 | MR | Zbl
[18] M. I. Taksar, “Stationary Markov sets”, L. N. Math., 1247 (1986), 302–340 | MR
[19] J. E. Young, Partition-valued stochastic processes with applications, PhD thesis, UC Berkeley, 1995 | MR